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Abstract
Target estimation methods with UWB pulse sig-

nals are promising as imaging techniques for interior
robots. We have already proposed an efficient al-
gorithm of shape estimation named SEABED(Shape
Estimation Algorithm based on BST and Extraction
of Directly scattered waves), which is based on a re-
versible transform BST (Boundary Scattering Trans-
form) between time delay and target shapes. In this
method, we take a quasi-wavefront from received sig-
nals with the matched filter of transmitted waveform
in order to estimate a target shape. However, the
scattered waveform is different from the transmitted
waveform in general depending on the target shape.
This difference causes estimation errors in SEABED
method. In this report, we propose a high-resolution
algorithm of polygonal-target shape estimation based
on the scattered waveform estimation, and evaluate
the method by numerical simulations.
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1 Introduction
Development of robot techniques is aiming at ad-

vanced robots that can measure surrounding environ-
ment. Many imaging methods using optical approach
have been proposed. However, passive optical tech-
niques suffer from an insufficient range resolution. On
the other hand, radar imaging methods have a high
range resolution, and they can estimate object shapes
even in the case of a fire where optical methods can-
not be used. In addition, radar systems can be applied
to human movement detection systems where optical
methods are not suitable from the viewpoint of pri-
vacy. While many imaging algorithms for radar sys-
tems have been proposed [1, 2, 3], they require in-
tensive computation because they are based on para-
metric methods. To solve this problem, we proposed
SEABED [4, 5], and accomplished a fast target imag-
ing. However, this method has estimation errors be-
cause it assumes that the scattered waveform is the
same as the transmitted one. In this report, we pro-
pose estimation methods of scattered waveforms for a
polygonal target to solve this problem. We evaluate
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Figure 1: System Model.

the proposed methods by numerical simulations and
experiments.

2 System Model
We show the system model in Fig. 1. We assume

a mono-static radar system. An omni-directional an-
tenna is scanned along a straight line. We deal with
2-dimensional problems and TE mode waves. The cur-
rent is a mono-cycle pulse in the transmitting antenna.
The target shape is a polygonal pillar. We assume a
non-dispersive and lossless medium and the target is
a perfect conductor. The spatial scale is normalized
by the center wavelength of the transmitted current
waveform, and the time scale is normalized by its pe-
riod. In this model, we scan an antenna along x axis.
We apply a matched-filter to received signals for esti-
mating the time of arrival.

3 Target shape estimation method
In this section, we first examine scattered wave-

forms. Next, we introduce an algorithm of shape esti-
mation method using an scattered waveform estima-
tion [6].

In general, the scattered waveform from a planar
boundary has the same waveform as the transmitted
one with the opposite sign. The scattered waveform
from a ridge of a plate has an integral waveform of
the transmitted one. We show example waveforms
in Fig. 2. The general scattered waveform from the
boundary of the polygonal pillar is generated from
these two waveforms in principle. SEABED algorithm
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Figure 2: Left: Specular reflection waveform, Right:
Edge diffraction waveform.
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Figure 3: Arrangement of the target location and an-
tenna.

has an estimation error caused by the waveform dif-
ferences because it utilizes the matched filter for the
transmitted waveform. Therefore, we should estimate
scattered waveforms to enhance the accuracy.

Next, we propose a target shape estimation method
with a waveform estimation. We define the shape pa-
rameter as p, which expresses the edge position and
φ which expresses the angular of the specular bound-
ary to the scanning direction. At first, we obtain the
shape parameters by the initial shape estimation with-
out waveform estimation. We define the antenna lo-
cation as xA. With the shape parameter we deter-
mine the scanning range XS where specular reflection
is dominant and XE where edge diffraction is dominant
as shown in Fig 3. We utilize the specular waveform
estimation for xA ∈ XS and the edge diffraction wave-
form estimation for xA ∈ XE. We define the estimated
waveform in each antenna location as F (ω) in the fre-
quency domain. We estimate the time of arrival by
the following equation with F (ω).

τ(xA)i = arg max
τ

∣∣∣∣∣

∫ ∞

−∞
R(ω)F i(ω)∗ejωτdω

∣∣∣∣∣,(1)

where i expresses the number of the iteration, and
R(ω) is the received waveform in the frequency do-
main.

We set xA = (xA, 0) because the antenna scans
along x axis. We calculate p and φ for xA ∈ XE and
xA ∈ XS, respectively, by utilizing estimated τ(xA).
We then renew the shape parameters again. We iter-
ate these procedures and accomplish the target shape
estimation. Fig. 4 shows the flowchart of this proce-
dure.

Initial Shape Estimation

Scattered Waveform Estimation

Adaptive Filtering 

Shape Estimation

Figure 4: Flowchart of algorithm.

Transmit Recieve

O

z

x

y

S

Aperturew1

w2

Figure 5: Arrangement of the antenna and the rect-
angular aperture.

4 Waveform estimation with Green’s
function

In this section, we express electric fields with
Green’s function. This idea can enhance the estima-
tion accuracy of waveforms. At first, let us consider
the electric-field waveform after propagating through
a finite aperture. This model is an approximation of
scattering of a rectangular target. In a 3-dimensional
problem, the electric field of the wave propagating
through an aperture is expressed by the following
equation [7].

4πE(r) = (1/jωε)
∫

C

∇
′
gH · ds +

∫

C

gE × ds

−
∫

S

[E∂g/∂n − g(∂E/∂n)]dS, (2)

where C is the boundary of the aperture, S is the sur-
face of the aperture, g is the Green’s function, E(r)
is the electric field at the position vector r, and ′

denotes the region containing sources. We take the
coordinates shown in Fig. 5 and set the aperture on
y = 0 plane. In this method, we assume that the
electromagnetic field on the aperture has the uniform
phase and amplitude and the distance from aperture
is enough longer than a wavelength. In this assump-
tion, we can unfold ∇′ ' −ŷ∂/∂y, g ' e−jky and
remove the first and second terms of Eq. (2). In the
3rd term we can expand ∂g/∂n = −∂g/∂y = jkg and
∂E(r)/∂n = −∂E(r)/∂y = −jkE(r).

Finally, Eq. (2) is approximated as

E(r) =
jk
2π

∫

S

gE0dS, (3)

where E(r) is the amplitude of E(r), and E0 is the
electric field of the aperture. In a 2-dimensional prob-
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Figure 6: Arrangement of the target location and the
antenna in the specular waveform region.

lem, Eq. (3) is expressed as

E(r) =

√
jk
2π

∫ w2

w1

gE0dx, (4)

where r = |r|, and w1, w2 are the width of the aper-
ture in a 2-dimensional problem. This equation can be
used for both of specular reflection and edge diffrac-
tion waveform estimations.

5 Waveform estimation algorithms for
shape estimation

5.1 Estimation of specular reflection
waveforms with Green’s function

The specular waveform from the planar boundary
whose width is on the order of a wavelength has a fre-
quency dependence. This is because the Fresnel zone
size in the high frequency domain is relatively smaller
than one in the low frequency domain. To accomplish
an accurate estimation, we need to estimate the spec-
ular reflection waveform.

In this section, we propose the waveform estimation
method with the Fresnel filter. We assume that the
specular waveform can be approximated as the wave-
form after propagating through a finite aperture. We
propose a specular waveform estimation based on this
approximation. Here, we simplify g(ρ) ' 1√

ρ e−jkρ

in Eq. (4). In this case, we can derive the following
equation as

FS(ω) = E0(ω)e−jkr0

√
j
π

∫ ξ2

ξ1

e−jt2dt, (5)





ξ1 = −
√

ω

r0c
w1

ξ2 =
√

ω

r0c
w2,

where we assume that E0(ω) is the same waveform
as the transmitted one with the opposite sign, and
w1, w2, r0 are estimated as

r0 =
| tanφ(xA − xp) + yp|√

1 + tan2 φ
, (6)

w1 =
√

|xA − p|2 − r2
0, (7)

w2 = w − w1, (8)
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Figure 7: Estimation error of the time of arrival for
w1 = w2 = 0.5λ.

where we define p = (xp, yp) which is the estimated
edge position in the previous step. We show the target
and the antenna location in Fig. 6

Fig. 7 shows the estimation error of the time of ar-
rival versus r0. Here, we set w1 = w2 = 0.5λ. the solid
line shows the error with the matched filter for FS(ω).
The broken line shows the error with the matched fil-
ter for the transmitted waveform. As shown in this
figure, we confirm improvements in the arrival time ac-
curacy compared with the conventional method. This
is because the Fresnel filter correctly estimates the fre-
quency dependence of the scattered waveform.
5.2 Estimation of specular reflection

waveforms for small targets
In the previous section, we proposed the specular

waveform estimation method with the Fresnel filter.
However, we still have a problem that we cannot ob-
tain an enough resolution in the time of arrival if the
width of the specular boundary is smaller than a wave-
length. Especially, at the tip of the specular bound-
ary we observe strongly interfered waveforms by the
edge diffraction. To solve this problem, we modify the
specular waveform estimation method with the Fres-
nel filter and HPF (High Pass Filter).

We utilize FS(ω)W (ω) instead of FS(ω), where

W (ω) =
{

1 (ωh ≤ ω)
0 (otherwise) ,

ωh is the cut-off angular frequency of HPF. First, we
estimate the initial time of arrival τ1 with the matched
filter for FS(ω). Second, we obtain the estimated time
of arrival with the matched filter for FS(ω)W (ω) .
This operation enables us to eliminate the edge diffrac-
tion waves which has relatively low frequency compo-
nents.

In HPF method, the noise tolerance is inferior to
the method without HPF because we suppress the
central frequency which has the maximum power of
the signal. To solve this problem, we introduce the
Fresnel zone index a which expresses the spatial scale
normalized by the propagation distance and the wave-
length. We calculate the cut-off angular frequency ωh
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Figure 8: Estimation error of the time of arrival in
Fresnel filter with optimum HPF for w1 = w2 = 0.25λ.

corresponding to a as

ωh =





2πa
r0c

(w1 + w2)2
(w2

w1

)2

(w2 ≥ w1)

2πa
r0c

(w1 + w2)2
(w1

w2

)2

(w2 < w1)
, (9)

where r0, w1, w2 are shown in Fig. 6. Eq. (9) enables
us to determine ωh considering the the distance from
the edge and preserve the signal power where the edge
diffraction is not dominant.

In order to determine an optimum Fresnel zone in-
dex, we define the evaluation value as v = λ(a)/P (a).
where λ(a) is the average of the estimated time accu-
racy for various sets of (w1, w2, r0), and P (a) is the
filtered signal power. We minimize v, and obtain the
optimum value of a = 0.27. We make the HPF with
the cut-off frequency corresponding to the optimum
Fresnel zone index.

Fig. 8 shows the estimation error of the time of
arrival at w1 = w2 = 0.25λ. The solid and broken
lines are the same as Fig. 7, and the chain line ex-
presses the estimation method by the Fresnel filter
with the optimum HPF. In this figure, we obtain about
10 times improvement in the estimation accuracy for
r0 ≥ 2.5λ. This is caused by the suppression of the
low-frequency component by the HPF which contains
the edge diffraction interference.
5.3 Estimation of Edge diffraction wave-

form with Green’s function
We have already proposed an edge diffraction wave-

form estimation method with the waveform library [8].
However, this method does not consider the target
width due to the limitation of the size of the libraries.
Therefore, it suffers from estimation errors caused by
the assumption that the size of the specular bound-
aries is is infinite. In this section, we introduce a
waveform estimation from the edge which is made by
two specular boundaries of finite lengths. By expand-
ing Eq. (4), the edge diffraction waveform is approxi-
mately expressed as

F (ω) =

√
jk
2π

E0(ω)
2∑

i=1

∫ wi,2

wi,1

g(ρ)dx, (10)
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Figure 9: Arrangement of the target location and the
antenna in the edge diffraction waveform region.
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Figure 10: Estimation time error for the edge diffrac-
tion wave.

ρ = 2
√

r2
i + x2 (i = 1, 2),

where E0(ω) is the transmitted waveform with
the opposite sign in the frequency domain, and
ri, w1,i, w2,i (i = 1, 2) is shown in Fig. 9. g(ρ) is the
Green’s function of 2-dimensional problem as given by

g(ρ) =
1
4j

H(2)
0 (kρ), (11)

where H(2)
0 (x) is the 0th order Hankel’s function of

the 2nd kind, and ρ is the propagation distance. This
method enables us to estimate the edge diffraction
waveform considering the width of the specular bound-
aries making edge.

Next, we examine the estimation errors of the time
of arrival in the edge waveform estimation. In Fig. 10,
we show the estimation error of the time of arrival for
w1 = w2 = 1.0λ and r2 = 1.0λ. The horizontal axis
is r1. The broken line expresses the method of wave-
form library, and the solid line expresses the proposed
method. We can confirm about 5 times improvement
from the conventional method. This is because the
proposed method includes the target width parameter
in Eq. (10).

6 Evaluation of target shape estima-
tion accuracy

6.1 Evaluation in Numerical simulation
We evaluate the accuracy of the proposed method

by numerical simulations in this section. At first, we
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Figure 12: Estimation error of the target angle.

assume a noiseless environment. Figs. 11 and 12 show
estimation error of the edge position and the target
angle, respectively. The solid line and the broken line
show the target shape estimation method with and
without waveform estimation, respectively. As shown
in these two figure, we see that we obtain a remarkable
improvement in the estimation accuracy of the edge
position and the target angle. Secondly, we evaluate
the proposed method in a noisy environment. Fig. 13
shows the estimation error of the edge position. The
lines are the same in Fig 11. In this figure, we con-
clude that the proposed method can largely improve
the accuracy if S/N is higher than 5dB.

6.2 Evaluation in experiment
In this section, we examine the proposed method

by experiments. We use the UWB signal with center
frequency of 3.7 GHz and the bandwidth of 1.0 GHz.
The antenna has an elliptic polarization whose ratio
of the major axis to the minor one is about 10 dB.

Fig. 14 shows the location of the antenna and the
target. We use a bi-static antenna whose separation
in x direction is 65mm. In a 2-dimensional problem,
the target length in the y direction is enough longer
than the wavelength. Furthermore, we scan the trans-
mitting antenna in the y direction as shown in Fig. 14.
to obtain a 2-dimensional waveform. We calculate the
2-dimensional scattered waveform R(xA, t) as

R(xA, t) =
N∑

i=0

r(xA, yi, t)δy, (12)
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Figure 13: Estimation Error of the edge location ver-
sus SN ratio.
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Figure 14: Arrangement of the antenna and the target
in the experiment.

where r(xA, yi, t) is the scattered waveform from the
transmitting point (xA, yi) to the receiving point
(xA, 0), N is fixed at 40, and δy is the sampling inter-
val fixed at 10mm. We scan the transmitting antenna
for the range of −200mm ≤ y ≤ 200mm.

Fig. 15 shows the estimated waveform at xA = 0.
The solid line expresses the scattered waveform in the
experiment, the broken line expresses the transmit-
ted waveform, and the chain line expresses the esti-
mated waveform. As shown in this figure, the esti-
mated waveform is much closer to the scattered wave-
form than the transmitted waveform. Fig. 16 shows
the estimation error of the time of arrival. The solid
line shows the proposed method with waveform esti-
mation, and the broken line shows the conventional
method without waveform estimation. To apply the
assumption of the line polarization in the proposed
method, we limit the range of scanning to −80mm ≤
xA ≤ 80mm. In this figure, we confirm about 3 times
improvement in the accuracy of time-of-arrival estima-
tion compared to the conventional method. We also
confirm that the accuracy of the edge position im-
proves by about 3 times compared to the conventional
method.

7 Conclusion
We proposed a target shape estimation method

with the scattered waveform estimation. At first, we
showed an iterative algorithm for target shape esti-
mation. In the waveform estimation, we proposed the
specular waveform estimation by the Fresnel filter. In
addition, we applied the HPF to the Fresnel filter in
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the case of a strong interference of the edge diffraction
wave and we optimized the cut-off frequency in the sig-
nal power and the estimation accuracy. We proposed
the edge waveform estimation. This method provides
a much higher accuracy of the time-of-arrival esti-
mation compared to a conventional waveform library
method. We evaluated the accuracy in noiseless and
noisy environments by numerical simulations. In the
experiments we confirmed a noticeable improvement
of the proposed method as far as S/N > 15dB. Here,
we focused on a 2-dimensional problem of a polygonal
pillar. We plan to expand the proposed method to an
arbitrary target in a 3-dimensional problem.
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Appendix: Calculation method for the
cut-off frequency by the Fresnel zone in-
dex

The Fresnel zone is the size of the aperture normal-
ized by the propagation wavelength and the distance.
This size expressed as the Fresnel-zone index a by fol-
lowing equation.

a =
w2

λr
, (13)

where λ is the wavelength, r is the propagation dis-
tance, and w is the size of the aperture. The cut-off
frequency for the Fresnel-index is expressed by the fol-
lowing equation.

ωh = 2πa
rc

w2
. (14)

Considering the distance from the edge of the aper-
ture, we define the cut-off frequency as

ωh =





2πa
rc

(w1 + w2)2
(w2

w1

)2

(w2 ≥ w1)

2πa
rc

(w1 + w2)2
(w1

w2

)2

(w2 < w1)
, (15)

where r, w1, w2 are shown in Fig.6.


