超広帯域アダプティブアレイドップラーレーダを用いた複数人体 のバイタル信号分離技術

Adaptive separation of vital signals from multiple persons using ultra-wideband array Doppler radar

前原 勝利1

Mototaka Yoshioka

奥村 成皓1

Kenichi Inoue

阪本 卓也 1,2 Takuya Sakamoto 瀧 宏文3

佐藤 亨1 Toru Sato

Katsutoshi Maehara 吉岡 元貴 4 Shigeaki Okumura 井上謙一4 福田 健志 4 Hirofumi Taki

酒井 啓之4

Takeshi Fukuda

Hiroyuki Sakai

京都大学大学院情報学研究科1

Graduate School of Informatics, Kyoto University 東北大学大学院工学研究科3

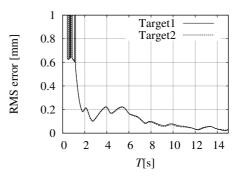
Graduate School of Engineering, Tohoku University

兵庫県立大学大学院工学研究科2

Graduate School of Engineering, University of Hyogo パナソニック株式会社 先端研究本部 4

Advanced Research Division, Panasonic Corporation

1 はじめに


近年の高齢者の増加などによって、在宅での生体情報 監視システムの重要性が増している。レーダによる呼吸・ 心拍の測定法は非接触で簡便であるため注目されている [1]。しかし、従来の報告では単一人体のみを仮定してお り、観測対象者以外からの信号が干渉し測定精度が悪化 する。そこで本稿では、超広帯域レーダを用いた2体の 人体の測定を想定し、アダプティブアレイ処理を用いて 各目標の生体信号を分離する方法を提案する。

2 システムモデルとバイタル信号分離技術

送信信号は中心周波数 60.5GHz、帯域幅 1.25GHz と し、受信には4素子等間隔リニアアレイを用いる。素子 間隔は 0.46mm(0.92\lambda) とする。2 体の人体の胸部を想定 した点目標を考え、両目標とも受信アレイ中心より距離 1.0m に位置するものとする。各々の目標の運動は [1] に おいて 26.4GHz 帯レーダにて測定された実測値を用い る。各目標のレーダからの視線方向をそれぞれ -5°、10° とし、DCMP 法による分離精度をシミュレーションに よって評価した。

DCMP 法は、所望波と不要波が無相関である場合に のみ不要波を抑圧することができる。本モデルにおける 所望波、妨害波はいずれも異なる人体の呼吸・心拍に伴 う体表面の変位により変調されているため、無相関であ ると考えられる。しかし、こうした生体信号の個人差が 信号間の相関を十分に低下させるかについての報告はこ れまでにない。そこで、DCMP 法において、相関行列 の平均時間 T を変化させた時の分離精度を、真値との 平均二乗誤差によって評価した。各目標について、もう 一方の目標が存在しない状況での測定で得られた時間波 形を真値とした。

図1にその結果を示す。拍動による胸の変位は0.2mm から 0.5mm であるため [3]、安定して誤差が 0.1mm 以下 となる 10 秒以上平均することが必要である。 図 2 に、T=1s、5s、10s とし、-5° 方向の目標を観測対象者とした時 のビームパターンを示す。各 T における不要波の到来 方向に対する利得はそれぞれ -0.34dB, -4.7dB, -9.0dB となり T=10s において十分に妨害波を抑圧できている ことがわかる。

呼吸・心拍による体表面変位の推定精度

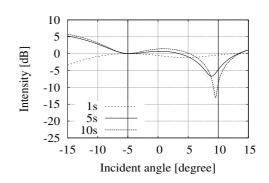


図 2 相関関数の平均時間とヌルの深さの関係

謝辞

本研究の一部は文部科学省 COI プログラム、科 学研究費補助金基盤研究 (A)25249057、若手研究 (B)15K18077、総務省電波資源拡大のための研究開発、 京都大学融合チーム研究プログラムの助成を受けて実施 された。本研究の測定は京都大学生存圏研究所METLAB にて実施された。

参考文献

- [1] T. Sakamoto et al., IEICE Electron. Express, No.3, pp.1-7, 2015.
- [2] 菊間信良、アダプティブアンテナ技術、2011.
- [3] G. Ramachandran et al., Med. and Biol. Eng. and Comput., No.5, pp.525-530, 1989.