Envelope法を用いた超音波イメージングのための アレイ素子数削減の実験的検討

版本 卓也[†] 瀧 宏文[†] 佐藤 亨[†]

† 京都大学大学院情報学研究科 606-8501 京都市左京区吉田本町 E-mail: †t-sakamo@i.kyoto-u.ac.jp

あらまし 超音波イメージングのための 128 素子凹面アレイを用いた実験システムを整備し、従来手法であるマイグ レーション法と近年注目されている高分解能画像化手法 Envelope の両方を実験データへ適用し、特性を明らかにし た。Envelope 法は従来リニアアレイのみ想定した手法であるため、凹面アレイに適用可能となるよう拡張を行った。 素子を削減した場合の特性を調べるため、128 素子のうちの一部の素子のみを用いた場合のイメージング性能を確認 した。その結果、Envelope 法を用いることで画像の劣化を起こさずに素子数を削減できる可能性が示唆された。実験 データを用いて素子数、S/N(信号対雑音比)をさまざまに変化させ、2 種類の手法のイメージング性能を定量的に評価 した。2MHz のパルスを用いた場合、Envelope 法により RMS 誤差 0.5mm と高精度なイメージングが実現でき、この 精度は 128 素子から 32 素子へ素子数を削減させた場合にも維持されることを明らかにした。この結果から Envelope 法を導入することで少数素子のみによる安価で高精度な超音波イメージングが実現できる可能性があることを明らか にした。

キーワード 超音波素子アレイ, Envelope 法, 超音波イメージング, 素子数削減

Ultrasound Imaging Experiment using the Envelope Method with Reduced Number of Ultrasound Element Circular Array

Takuya SAKAMOTO[†], Hirofumi TAKI[†], and Toru SATO[†]

† Graduate School of Informatics, Kyoto University Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501 JAPAN E-mail: †t-sakamo@i.kyoto-u.ac.jp

Abstract In this study, we applied a couple of different imaging methods to ultrasound measurement system to evaluate their performance. We employed a 128-element ultrasonic concave array system for this measurement. Images generated by the conventional migration method were compared with the Envelope Method, a promising high-resolution imaging technique. To check the imaging quality of an ultrasonic measurement system using reduced number of elements, we selected 8, 16, 32 and 64 elements from the total 128 elements used in our imaging process. The results show that the Envelope Method can produce clear images with the RMS (Root Mean Square) error less than 0.5 mm even when using a small number of elements, suggesting that the introduction of the Envelope Method could be an effective way of reducing the number of elements employed in array systems while maintaining its high performance in image quality.

Key words ultrasound element array, Envelope Method, ultrasound imaging, reduced element number

1. はじめに

超音波イメージング技術は医療を含む幅広い応用を有するため、新たな手法やシステムの開発が盛んに行われている[1]~

[3]。特に目標の表面形状を推定する技術は胎児の発育観察[1] やパイプ内の気泡のモニタリング[3] などの応用を有する。こ れらの研究では超音波プローブを手動あるいは機械的に走査す ることで分解能を向上させている。これらの走査のかわりに超 音波素子アレイを導入することで、分解能やフレームレートを 同時に改善させることができ、有望な技術である。一般に、所 望分解能が上がるほど、多素子の大型アレイが必要となる。し かし、コストの面からそうした多素子のアレイを用いることは 容易ではない。このことは医療用超音波イメージング技術の問 題として認識されている[4]。

超音波素子アレイを用いたトモグラフィー技術は不均質媒 質中の目標を高分解能で観察できるために注目され、これまで に多くのグループによって研究されてきた[3],[5],[6]。一方、超 広帯域レーダイメージング分野において、Envelope 法と呼ば れる高分解能画像化手法が開発された[7]。この手法は目標モデ ルを簡易化し、比較的均質な媒質の中の明瞭な境界を有する目 標のみを対象に絞ることで従来の分解能を大きく上回るイメー ジング技術を提供する。Envelope 法の高いイメージング能力 は超広帯域レーダシステムを用いた実験によっても明らかにさ れている[8],[9]。佐保ら[10] は Envelope 法を超音波測定デー タへ適用し、高分解能画像化が超音波でも可能なことを報告し ている。この文献[10] では、超音波プローブがロボットアーム へ取り付けられ、平面上を走査することで目標の3次元イメー ジングを実現した。

このように、Envelope 法は 1 次元または 2 次元のリニア アレイを想定して開発されてきた。一方、多くの医用システム では被測定物を囲むような凹面アレイの使用が適切な場合が少 なくない [11], [12]。Helbig ら [13] は Envelope 法に類似した方 法である SEABED 法 [14] を凹面アレイへ適用した。Envelope 法と SEABED 法は様々な条件で比較され、Envelope 法の高分 解能性能が勝ることが示されてきた [7]。このため、Envelope 法を凹面アレイに適用できるよう拡張することは高性能のイ メージングシステム開発に不可欠であるといえる。

本稿では Envelope 法を凹面アレイへ適用可能なように拡 張し、整備した超音波アレイ実験システムにより取得したデー タへ適用し、従来法であるマイグレーション法と比較する。そ の結果、Envelope 法を用いることで比較的少数の素子数に対 してもイメージング性能の劣化が見られないことを示す。この 結果は安価で簡易な超音波イメージングシステムの実現の可能 性を示唆するという点で重要である。

2. システムモデル

図1は本稿で使用する超音波イメージング実験システムの外 観図である。簡単のため、本稿では2次元のイメージングにつ いてのみ検討する。アレイ素子は0.6mm 間隔で半径5cmの円 上に配置されている。開口幅は127 × 0.6mm=76.2mm であ り、凹面水槽の87.3 度を占める。図2は実験システムの配置お よび定義される座標系を示す。ここでは第1番素子はx軸上に 配置されている。アクリル製の円筒目標を水槽内の水中、x-y 座標の(1.1mm,-2.0mm)に配置する。2MHzの正弦波の2周 期分を切りだした形状の波形を送信波形とし、それぞれの素子 から順番に送信される。エコーは送信素子と同じ素子で受信さ れる、いわゆるモノスタティックシステムを構成する。受信信 号はサンプリング、A/D 変換されメモリへ保存され、イメージ

図 1 超音波イメージング実験システム Fig. 1 Ultrasonic imaging experimental system.

ング処理に使用される。

超音波素子アレイの個々の素子は 0.5mm×10.0mm の振動子 を 0.6mm ピッチで円上に並べて構成される。超音波の送信およ び受信にはジャパンプローブ株式会社の超音波パルサ・レシーバ JPR-10CN を用いる。帯域幅は 300Hz-20MHz と広く、10 ビッ ト A/D 変換を行う。サンプリング周波数は 20MHz とする。素 子の送受信切り替えには同社のマルチプレクサ MUX-128 を用 い、リレースイッチの自動切り替えを行うことで 10 秒程度で 全素子の測定を完了する。

 r_i $(i = 1, 2, \dots, 128)$ を *i* 番目の素子の 2 次元座標上での位置と定義する。信号 $s_i(t)$ は *i* 番目の素子でパルスの送受信を行うことで得られたエコーに整合フィルタを適用した後の波形である。この整合フィルタは送信波形と整合するよう設計し、本稿ではインパルス応答が次式に示す p(t) で与えられるフィルタとする。

$$p(t) = \exp(-t^2/2\sigma^2)\cos(2\pi ft) \tag{1}$$

ここで $\sigma = 0.4$ 、 μsec および f = 2.0 MHz とする。図 3 に受 信波形の一例を示す。整合フィルタにより波形がほぼ左右対称 となり、S/N が改善していることがわかる。本稿では整合フィ ルタ適用後の S/N をピーク S/N と呼ぶ。

- 3. イメージング手法
- 3.1 マイグレーション法

マイグレーション法は医用イメージングにおいてしばしば使用される手法であり、得られる画像S(x)は次式の通り計算される。

$$S(\boldsymbol{x}) = \left|\sum s_i \left(2 \left| \boldsymbol{r}_i - \boldsymbol{x} \right| / c \right) \right|^2 \tag{2}$$

ここで *x* は画像上の位置ベクトルである。医用イメージングで 用いられるビームフォーミング法は一般にバイスタティックシ ステムを採用しているが、本研究ではモノスタティックシステ ムを採用した。この手法は受信信号を想定される伝搬距離に応 じて時間シフトさせて可算する簡易な手法である。正しい目標 位置に対応する *x* に対しては各素子で受信された信号が同位相

図 2 アクリル円筒目標および超音波素子アレイの配置図 Fig. 2 Experimental system setup with an acrylic cylinder.

で加算されることで大きな値となり、画像を構成する。

3.2 Envelope法

Envelope 法は送受信素子の位置を中心とする円を複数描き、 その包絡線を目標形状として推定する手法である [8]。元来の Envelope 法はリニアアレイ、あるいは線形走査されたデータ にのみ適用可能な手法であった。本節では Envelope 法を凹面 アレイに適用可能なように拡張し、その手順を説明する。

まず、ピーク点を整合フィルタ適用後の受信信号から推定す る。これらの点は次式を満たす。

$$\frac{\mathrm{d}s_i(t)}{\mathrm{d}t} = 0, \tag{3}$$
$$|s_i(t)| > \delta, \tag{4}$$

ここで δ は雑音成分を除去するための正の定数である。本稿で は単一目標のみを想定するため、ピーク点は各素子に対して一 点のみ推定される。こうしてi番目の素子に対応する遅延時間 $t = T_i$ が決定される。

次に、 r_i を中心とし、半径を $a = cT_i/2$ とする円上の点を計算する。これらの点 $x = x_{i,k}$ は次式のとおり計算される

$$\boldsymbol{x}_{i,k} = r_0 \begin{pmatrix} \cos \theta_i \\ \sin \theta_i \end{pmatrix} + a \begin{pmatrix} \cos \phi_k \\ \sin \phi_k \end{pmatrix}, \qquad (5)$$

ここでi番目の素子は $r_i = r_0(\cos \theta_i, \sin \theta_i)$ に位置する。続いて直交座標上の $x_{i,k}$ を極座標へ変換する。

$$\begin{aligned} \boldsymbol{x}_{i,k} &= (x_{i,k}, y_{i,k}) \\ &\to (r_{i,k}, \phi_{i,k}) = \left(\sqrt{x_{i,k}^2 + y_{i,k}^2}, \tan^{-1}\left(\frac{y_{i,k}}{x_{i,k}}\right)\right) (7) \end{aligned}$$

こうして極座標上の値 $r_{i,k}(\phi)$ を得る。最後に、求める画像 $R(\phi)$ は凸形状目標に対しては次式により得られる。

$$R(\phi) = \min_{i,k} r_{i,k}(\phi).$$
(8)

超音波素子アレイを用いた実験データによる イメージング

前節に示した2手法を実際に超音波素子アレイを用いた実験 データに適用し、イメージング性能を調べる。整合フィルタ適 用後、全素子の平均されたピークS/Nは23.0dBであった。こ こでピークS/Nは次式で定義される。

$$S/N = \frac{\max_{i,t} |s_i(t)|^2}{\frac{1}{TN_e} \sum_{i}^{N_e} \int_0^T |n_i(t)|^2 dt},$$
(9)

ここで $N_{\rm e}$ は使用する素子数であり、 $s_i(t)$ と $n_i(t)$ は整合フィルタ適用後のエコーおよび雑音である。

図4はマイグレーション法により推定された画像を示す。こ こで、素子は128,32 および16素子の3通りを用いた場合の 結果を示している。これらの少数素子は一定間隔になるように 間引かれ、例えば32素子での実験の場合は素子番号#1,#5, #9,...,#125が選択されている。画像は最大値で正規化され、 dBで表示されている。破線は真の目標形状を示す。この図で は多くの不要成分による虚像が見られ、特に素子数を削減した 場合にその影響が大きい。128素子全てを用いた場合にはこれ らの虚像は比較的少ない。これは、式(2)における総和演算に おいてこれらの不要な成分どうしが打ち消し合い、画像への寄 与が減るためである。

図5は受信された信号(実線)および推定された遅延時間 (破線)を各素子について示す。遅延時間は正しく推定されて いることがわかる。図6はEnvelope法により推定された画像 である。ここで、使用されたデータは図4と同じものである。 図4のマイグレーション法を用いた場合と比べ、画像はより明 瞭となり、少ない素子数に対しても画像の劣化はほとんど見ら れない。これは、遅延時間がまず波形の中から推定され、その 後の画像化処理において波形どうしの不要な干渉が本質的に生 じないためである。

図 7 は RMS(Root Mean Square) 誤差を各々の画像につい て計算したものである。マイグレーション法および Envelope 法を複数の素子数 (8, 16, 32, 64 および 128) に対して適用し、 定量的に画像精度を調べる。RMS 誤差 *e* は画像 *S*(*x*) に対し て次式のとおり定義する。

$$e = \sqrt{\frac{\sum S(\boldsymbol{x}) |\boldsymbol{x} - \boldsymbol{c}(\boldsymbol{x})|^2}{\sum S(\boldsymbol{x})}},$$
(10)

ここでc(x)は真の目標境界線上の点のうち、画像上の点xに

図 4 マイグレーション法による推定像

Fig. 4 Estimated images using the migration method.

最も近い点の座標である。この距離が画像の値で重みづけされ、 二乗平均を計算する。図7より、Envelope 法は素子数を削減 した場合でも画像の精度を高く保っていることがわかる。128 素子使用の場合で Envelope 法はマイグレーション法に対して 4.8 倍、8 素子使用の場合では 10.3 倍と高い精度改善性能を示 している。

図 8 は RMS 誤差とピーク S/N の関係を示している。異な る S/N に対応するデータは計算機で発生させた正規乱数を実 験データに可算することで生成している。マイグレーション法

図 5 文信版形のよび推進された建築時间 Fig.5 Estimated delay time for each element.

の RMS 誤差は S/N=40dB においても 1.0mm を超えている。 一方で Envelope 法は S/N > 17dB に対して RMS 誤差は常に 0.5mm よりも小さい。32 素子使用の場合のマイグレーション 法の RMS 誤差は 3.6mm あたりにフロアを生じ、S/N を上げ てもそれより改善しない。これは、画像の劣化が不要な波形干 渉による虚像により生じたものが支配的であり、雑音の寄与は それより小さいからである。Envelope 法の RMS 誤差は素子 数にあまり依存しないこともわかる。これは、Envelope 法に おいては素子数は精度よりも画像の分解能に強い影響を与える ためである。

5. 議 論

Yang ら [15] も本稿と同様に超音波アレイ素子数削減のため の手法を提案している。彼らは非線形閾値法を導入することで 素子数を減らす方法を提案し、実験データに適用した結果を示 した。この手法は画像に現れる虚像を画像位置に応じて適応的 に変化させた閾値によって除去するものである。この閾値の決 定には2つのパラメータを画像の劣化度に応じて決定する必要 があり、容易ではない。本稿は彼らの研究と目的は類似するも のの、異なるイメージング手法の素子数削減による画像劣化を 評価したという点で異なるアプローチを取った研究である。

6. ま と め

本稿では超音波イメージング実験により得られたデータに2 つの異なるイメージング手法を適用した場合のイメージング性 能について検討を行った。測定システムは128素子凹面アレイ であり、凹面素子配置に適用可能なようにEnvelope法を拡張 した。実験データを用いたイメージングにより、Envelope法 を用いることで画像がより明瞭になることを示した。128素子 全てを使用した場合にEnvelope法はマイグレーション法に対 して4.8倍、8素子のみ使用した場合は10.3倍の画像精度改善 を確認した。さらに、Envelope法による画像はマイグレーショ ン法による画像に比べて素子数を減らした場合でも高い画像精 度を維持することがわかった。17dB以上のS/Nに対して128 素子および32素子のいずれにおいてもEnvelope法はRMS誤 差が常に0.5mmを下回り、マイグレーション法のRMS誤差

0

-5

図 6 Envelope 法による推定像

Fig. 6 Estimated images using the Envelope Method.

が約 3.0mm および 4.0mm(S/N=17dB, 128 素子および 32 素 子使用)となることと比べ高精度のイメージング性能を有する ことが確認できる。このことは、Envelope 法を用いることで 簡易で安価な高画質の超音波イメージングシステムが実現でき る可能性を示唆する点で重要である。今後、Envelope 法の精 度や分解能をより複雑な形状の目標や複数の目標を用いた実験 により明らかにすることが課題となる。

文 献

[1] D. Vray, A. Discher, J. Lefloc'h, W. Mai, P. Clarysse,

図 7 各素子数およびイメージング手法を用いた場合の画像の RMS 誤 差 (S/N=23.0dB)

Fig. 7 RMS error for each imaging method with different numbers of elements (S/N=23.0 dB).

Q. C. Pham, J. Montagnat and M Janier, "3D quantification of ultrasound images: Application to mouse embryo imaging in vivo," 2002 IEEE Ultrasonics Symposium, pp. 1597-1600, vol. 2, 2002.

- [2] L. Sun, C. Feng, J. M. Cannata, J. A. Johnson, J. T. Yen and K. K. Shung, "A real-time high frame rate high frequency ultrasonic system for cardiac imaging in small animals," 2006 IEEE Ultrasonics Symposium, pp. 2206-2209, Apr. 2007.
- L.-J. Xu, L.-A. Xu, "Ultrasound tomography system used [3] for monitoring bubbly gas/liquid two-phase flow," IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, vol. 44, no. 1, pp. 67-76, Jan. 1997.
- [4] M. Karaman, I. O. Wygant, Ö. Oralkan and B. T. Khuri-Yakub, "Minimally redundant 2-D array designs for 3-D medical ultrasound imaging," IEEE Trans. on Medical Imaging, vol. 28, no. 7, July 2009.
- [5] N. Duric, Li. Cuiping, C. Glide-Hurst, P. Littrup, L. Huang, J. Lupinacci, S. Schmidt, O. Rama, L. Bey-Knight, Y. Xu, "Breast imaging with ultrasound tomography: Clinical results at the Karmanos Cancer Institute," Proc. International Conference on BioMedical Engineering and Informatics, vol. 2, pp. 713-717, 2008.
- [6] K. Nogami and A. Yamada, "Evaluation experiment of ultrasound computed tomography for the abdominal sound

speed imaging," Japanese Journal of Applied Physics, vol. 46, no. 7B, pp. 4820–4826, July 2007.

- [7] S. Kidera, T. Sakamoto and T. Sato, "A robust and fast imaging algorithm with an envelope of circles for UWB pulse radars," IEICE Trans. on Commun., vol. E90–B, no. 7, pp. 1801–1809, July 2007.
- [8] S. Kidera, T. Sakamoto and T. Sato, "High-resolution and real-time 3-D imaging algorithm with envelope of spheres for UWB radars," IEEE Trans. Geoscience and Remote Sensing, vol. 46, no. 11, pp. 3503–3513, Nov. 2008.
- [9] S. Kidera, Y. Kani, T. Sakamoto and T. Sato, "A fast and high-resolution 3-D imaging algorithm with linear array antennas for UWB pulse radars," IEICE Trans. on Commun., vol. E91–B, no. 8, pp. 2683–2691, Aug. 2008.
- [10] K. Saho, T. Kimura, S. Kidera, H. Taki, T. Sakamoto and T. Sato,, "Experimental study of robust and high-resolution ultrasound imaging algorithm with adaptive smoothing techniques," Proc. Workshop for Space, Aeronautical and Navigational Electronics, Nov. 2008.
- [11] T. Miyashita and A. Honda, "An experimental study of ultrasonic diffraction tomography with circular scanning," Japanese Journal of Applied Physics, vol. 39, no. 5B, pp. 3101–3102, May 2000.
- [12] A. Yamada and K. Kurita, "Transmission-type ultrasonic inverse scattering computed tomography using observation data on circular arc points," Japanese Journal of Applied Physics, vol. 40, no. 5B, pp. 3890–3895, May 2001.
- [13] M. Helbig, M. A. Hein, U. Schwarz, J. Sachs, "Preliminary investigations of chest surface identification algorithms for breast cancer detection," Proc. IEEE International Conference on Ultra-Wideband, vol. 2, pp. 195-198, Sep. 2008.
- [14] T. Sakamoto and T. Sato, "A target shape estimation algorithm for pulse radar systems based on boundary scattering transform," IEICE Trans. on Commun. vol. E87–B, no. 5, pp. 1357–1365, May 2004.
- [15] M. Yang, H. I. Schlaberg, B. S. Hoyle, M. S. Beck and C. Lenn, "Real-time ultrasound process tomography for two-phase flow imaging using a reduced number of transducers," IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 3, May 1999.