# UWB パルスレーダのための高精度目標形状推定法の実験的検討

阪本 卓也<sup>†</sup> 木寺 正平<sup>†</sup> 佐藤 亨<sup>†</sup> 三谷 友彦<sup>††</sup> 杉野 聡<sup>†††</sup>

† 京都大学大学院 情報学研究科 通信情報システム専攻, 〒 606-8501 京都市 左京区 吉田本町
 †† 京都大学 生存圏研究所, 〒 611-0011 京都府 宇治市 五ヶ庄
 ††† 松下電工株式会社 先行・融合技術研究所 高度 MEMS 開発センター、

〒 571-8686 大阪府 門真市 大字門真 1048

あらまし 災害現場など人間が行動することの困難な場所での救助活動にはロボットの実現が大きな助けとなる。近 年標準化が進められている超広帯域(UWB)信号を利用したUWBパルスレーダは空気中で利用可能であり、高い距 離分解能を有するためにロボット用状況測定手段の有望な候補となりつつある。レーダ画像化は設定不適切逆問題の 一種として知られており、多くの研究がなされてきたがその多くは地下探査などの連続的に誘電率の変化する媒質を 対象とするために長い計算時間を要する反復計算に基づいている。一方で空気中の物体の多くが明瞭な境界を有して いるため、空気中の目標形状の推定は問題を単純化することができる。我々が現在までに開発してきたアルゴリズム である SEABED 法[1],[2] はこの特徴を利用することで、受信データと目標形状の間の可逆な変換関係に基づく高速 な立体形状推定を実現している。さらに、SEABED 法の推定精度を向上させるために、グリーン関数積分による散乱 波形推定法も開発してきた。現在までに両提案法の特性評価は数値シミュレーションのみにより行ってきた。本稿で はUWBパルスレーダの実験を行い、両提案手法の特性を実験的に検討する。 キーワード UWBパルスレーダ実験,立体形状推定,SEABED 法,波形推定

An experimental study on an accurate shape estimation algorithm for UWB pulse radar systems

Takuya SAKAMOTO<sup>†</sup>, Shouhei KIDERA<sup>†</sup>, Toru SATO<sup>†</sup>, Tomohiko MITANI<sup>††</sup>, and Satoshi

SUGINO<sup>†††</sup>

† Dept. of Communications and Computer Eng., Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
 †† Research Institute for Sustainable Humanosphere, Kyoto University, Uji-shi, Kyoto 611-0011, Japan
 ††† Advanced MEMS Development Center, Matsushita Electric Works, Ltd.,

1048, Kadoma, Osaka 571-8686, Japan

Abstract It is hoped that rescue robots help human lives in the near future. Recently, UWB(Ultra Wide Band) has been standardized in the USA, and it enables us to develop pulse radars with high range resolution. This technology is a promising candidate for the environment measurement for robots. Radar imaging is known as one of ill-posed inverse problems, for which various algorithms have been proposed. Most of them were developed for continuously distributed media such as the ground. Their calculation time is too long because they are based on iterative methods, which is not acceptable for the realtime operation of robots. On the other hand, most of in-house objects have clear boundaries, which enables us to simplify the models. We have already proposed a fast imaging algorithm SEABED for UWB pulse radars [1], [2], which is based on a reversible transform by utilizing this simple model. We have also developed a waveform estimation method to improve the accuracy of SEABED algorithm. The performance of these algorithms has been investigated only with numerical simulations. In this paper, we experimentally study the performance of the algorithms with a UWB pulse radar experiment system.

Key words UWB pulse radar experiment, 3-D shape estimation, SEABED algorithm, waveform estimation

## 1. はじめに

災害現場での救助用ロボット等に必要とされる状況測定手 段としてパルスレーダが有望である。近年米国 FCC(Federal Communications Commission)の先導により日本でも標準化 の検討が行われている超広帯域 (Ultra Wide Band; 以下 UWB と略す)信号は空気中で使用するレーダでも使用可能であり、 高い距離分解能を実現することができる。この高い距離分解能 は、状況測定手段として現在多く用いられている CCD カメラ 等を用いる光学的手法の有する高い水平分解能と相補的であり、 重要な技術である。こうした背景を踏まえ、本稿では UWB パ ルスレーダを用いる目標形状推定法を扱う。

一般に、近傍の目標をレーダで画像化する問題は設定不適切 逆問題の一種として知られており、多くの手法が提案されてき た[3]~[9]。これら従来法の多くは地下探査を目的とする地下探 査レーダや非破壊検査を目的とするトモグラフィ技術を対象と しており、誘電体が連続的に分布する媒質内の構造を推定する 問題を解くものである。こうした一般性のある困難な逆問題を 解くためには反復処理や再帰的処理を繰り返す必要がある。反 復処理では精度や安定性を優先するために計算時間を犠牲し、 ロボットなどのリアルタイム処理への応用が困難であったため、 高速なレーダ画像化手法が望まれていた。空気中の多くの物体 は明瞭な境界を有するために、従来手法の扱うモデルは過度に 冗長であり、用途を限定することで目標物体のモデルを簡単化 することができる。このようにモデルを簡単化することによ り、我々は高速形状推定法である SEABED 法を開発した [1]。 SEABED 法は目標が明瞭な境界を有することを仮定すること で、目標形状と受信データの間に成り立つ可逆な変換関係を利 用して高速形状推定を実現する。我々は今までに数値計算によ り SEABED 法の高速な目標形状推定能力を確認してきた。

我々は SEABED 法による形状推定は多くの場合に波長に対 して相対的に高い精度を達成していることを確認した。しかし ながら、低い周波数帯の UWB 信号を用いる場合には波長が 長くなるため、推定精度が十分でない場合があり、形状推定の 高精度化は重要な課題であるといえる。この精度は受信信号か らの疑似波面と呼ぶ等位相面の推定精度に依存している。疑似 波面は散乱波の遅延時間に対応するため、散乱パルスの到来時 刻推定を高精度に行うことで高精度な形状推定が実現される。 UWB 信号は中心周波数に対し相対的に広い帯域を有するため に周波数依存の現象による波形変化が大きく、そのことが形状 推定精度に大きく影響することが従来の狭帯域のレーダと大き く違う点である。そのため、位相回転や散乱による波形変化の 影響を補正することが重要である。目標境界面が凹面の場合に はコースティックと呼ばれる領域の通過前と通過後で波形の位 相が回転する現象が知られている。この現象による位相回転を 考慮しない場合には推定形状に 1/8 波長のオフセット誤差が生 じる。我々は受信信号から計算される特徴量によって位相回転 の影響を完全に補正可能であることを明らかにし、SEABED 法の高精度化を実現した[10]。さらに、凸面からの散乱波の波 形推定によって SEABED 法の高精度化を目指した研究を行っ



図1 システムモデル

ている。我々はグリーン関数の積分により、多角形状物体からの散乱波を推定することで高精度にパルス到来時刻を推定する 手法を開発し、数値計算によりその特性を確認している[11]。

SEABED 法およびその高精度化手法について、現在までに 数値計算のみによる特性評価を行ってきた。本稿では UWB パ ルス発生機および等価サンプリングオシロスコープにより構成 される UWB パルスレーダ実験システムを構成し、実験的検討 を行う。SEABED 法およびグリーン関数積分による波形推定 法の両者を実験データに適用し、いずれも有効に機能すること を確認した。ただし、SEABED 法については雑音やタイミン グジッタの影響による不規則成分の影響を抑圧する必要がある ため、SEABED 法を安定化する手法を本稿で提案する。

#### 2. システムモデルおよび実験系

本稿では空気中の明瞭な境界に囲まれた目標物体の形状を推 定する問題を扱う。UWB パルスの送信および受信を単一の無 指向性アンテナを用いて行うモノスタティックシステムを想定 する。この送受信アンテナを平面走査しながら UWB パルスの 送受信を行なう。受信信号は A/D 変換され、メモリに記録さ れる。システムモデルを図1に示す。FDTD 法による数値計算 の場合はアンテナ位置に強制電流を加えることでパルスを送信 し、同じ場所の電界を受信信号として記録している。

以上で説明したシステムモデルに基づいて実験システムを構 成する。実験システムのブロック図を図2に示す。UWBパル ス発生器から出力する信号は送信アンテナに入力する。数値計 算では送信アンテナと受信アンテナは同一のものを想定するが、 実験では広いビーム幅を有する送受信アンテナを近接させて 近似的にモノスタティックシステムを構成する。本稿ではアン テナ間隔は 6.5cm とする。送受信アンテナ対は X-Y ポジショ ナに取りつけられ、平面上で走査される。送受信アンテナを対 向させて十分に離した場合の波形を送信波形と呼び、そのパラ メータは中心周波数 3.7GHz, 中心波長 8.1cm, 帯域幅 1.0GHz である。アンテナから送信される偏波は長軸対短軸の電力比が 送受信合計で 10dB の楕円偏波である。受信アンテナで受信さ れる信号は等価サンプリングオシロスコープでディジタルデー タに変換され、保存される。等価サンプル間隔は 7.4psec であ る。UWB パルス発生器のパルス繰り返し周期は 50nsec であ る。対象とする目標物体以外からの散乱を防ぐため電波無響室 で測定を行う必要がある。京都大学生存圏研究所全国共同利用・ マイクロ波エネルギー伝送実験装置 (METLAB) の電波無響室



図 2 実験装置ブロック図



図 3 METLAB 電波無響室内での UWB パルスレーダ実験風景

での実験の様子を図3に示す。

## 3. SEABED アルゴリズム

本節では我々が提案した高速立体目標形状推定手法である SEABED 法 [1], [2] を説明する。xyz 座標系内の z = 0 上でア ンテナを走査する。アンテナ位置 (x, y, z) = (X, Y, 0) で受信さ れた信号を  $s_0(X, Y, Z)$  と定義する。ここで Z = ft/2 とする。 但し、t は受信時刻、f は中心周波数である。x, y, z, X, Y のい ずれもパルスの中心波数で正規化する。 $s_0(X, Y, Z)$  の Z に対し 整合フィルタを適用することで s(X, Y, Z) を得る。s(X, Y, Z)の等位相面を疑似波面と呼び、Z 方向の微係数が 0 となる点 (X, Y, Z) の全体から急に変化しないもの同士を順次接続する ことにより得られる。この条件は後に述べる式 (3) に示される。

目標境界 (x, y, z) と疑似波面 s(X, Y, Z) の間には次式の境界 散乱変換 (BST) が成り立つ。

$$\begin{cases} X = x + z\partial z/\partial x \\ Y = y + z\partial z/\partial y \\ Z = z\sqrt{1 + (\partial z/\partial x)^2 + (\partial z/\partial y)^2}, \end{cases}$$
(1)

この式は目標境界面上の点 (x, y, z) で強い散乱反射の起こるア

ンテナ位置 (X, Y, 0) およびレンジ Z を表したものであり、容 易に導くことが可能である。図 4 に目標境界および疑似波面の 例を示す。ただし、簡単のために y および Y 方向に一定とし、 y および Y 軸に垂直な断面を描いている。Z が X の大きなと ころで 2 つの値を持つのは凹面部分の 2 か所で散乱が生じてい るためである。一方、この変換に逆変換が存在するならば目標 形状 (x, y, z) が直接得られるため、高速な形状推定が実現でき る。我々は既に次式の通り逆変換である逆境界散乱変換 (IBST) が存在することを明らかにした。

$$\begin{cases}
x = X - Z\partial Z/\partial X \\
y = Y - Z\partial Z/\partial Y \\
z = Z\sqrt{1 - (\partial Z/\partial X)^2 - (\partial Z/\partial Y)^2},
\end{cases}$$
(2)

SEABED 法は式 (2) の右辺を計算することにより目標形状推 定を実現する。図4のように疑似波面が2値関数であっても疑 似波面を両方抽出し、それぞれに対して逆変換を行うことで形 状推定が実現される。式 (2) において z が実数であるために

$$\left(\frac{\partial Z}{\partial X}\right)^2 + \left(\frac{\partial Z}{\partial Y}\right)^2 < 1 \tag{3}$$

が必要である。この式が示す通り、疑似波面は勾配に上限があ り、疑似波面を抽出する際の手がかりとして使用している。

SEABED 法の適用例を図 5 および図 6 に示す。真の目標形 状は図1にあるU字型の物体であり、0.3 波長間隔の20×20 点での受信信号からの形状推定に対応する。アンテナ走査面を z = 3 としているため、両図とも目標物体の上半分が推定され ている。図5は目標形状に対する真の疑似波面を与える場合 であり、SEABED 法の理想的な推定形状を表している。一方、 図 6 は 3 次元 FDTD 法により受信信号を作成し、そこから疑 似波面抽出および形状推定を行う場合の推定形状である。偏波 は x 方向の直線偏波とし、受信についても同方向の電界のみを 記録する。ここでは送信波形に整合するフィルタを用いて処理 している。両者はいずれも目標形状の推定を実現しており、図 6を得るのに必要な計算時間は単一の Xeon2.8GHz プロセッサ を用いて約13msecと非常に短い。図6の推定形状が図5とわ ずかながら異なるのは散乱波形と使用するフィルタが整合して いないことに起因する。図7にこれらの推定像の差の絶対値を 示す。目標物体とアンテナの距離が近い場合に誤差が大きいの は近傍界の影響の可能性が考えられる。2個所の右方端点付近 では特に誤差が大きくなっている。SEABED 法による形状推 定を更に高精度にするためには散乱波形を正確に推定する必要 がある。散乱波形推定については次節で述べる。

## 4. 高精度な疑似波面抽出のための散乱波形推定

前節で述べた SEABED 法は受信データより疑似波面の抽出 を行う。高精度な形状推定のためには高精度な疑似波面抽出 が必要である。受信信号に整合フィルタを適用して得られる *s*(*X*,*Y*,*Z*) から疑似波面を抽出する。フィルタが実際の散乱波 形と整合しない場合には疑似波面が実際と異なる値をとるた めにあらかじめ散乱波形を推定する必要がある。一方、散乱波 形は目標形状に依存するため、形状推定と波形推定を同時に行



図 4 目標境界と疑似波面の例 (y, Y 方向に一定の場合)

う必要がある。我々は形状推定と波形推定を交互に反復して行うことで高精度な点目標位置推定を実現している[12],[13]。同 手法は点目標のみを対象としているためSEABED法の高精度 化に使用することは不可能である。我々は有限の大きさを有す る凸多角形状目標に対して適用可能な形状・波形推定法を開発 した[11]。同手法では2次元問題を想定し、凸多角形状目標物 体の鏡面反射波およびエッジ回折波をそれぞれ推定する。本稿 ではエッジ回折波推定法について説明する。図8に示す通り、 エッジ近傍に送受信アンテナが存在し、鏡面からの反射波が受 信されないと仮定する。提案波形推定法では散乱波形を周波数 領域で次式により近似する。

$$e_{\rm s}(\omega) \propto -\sqrt{{\rm j}\omega}e_0(\omega)\left(\int_{l_1}g(r_1){\rm d}s_1 + \int_{l_2}g(r_2){\rm d}s_2\right)$$
 (4)

ここで  $s_1, s_2$  は図 8 の二つの鏡面  $l_1, l_2$  の上を動く。 $r_1$  はアン テナと  $s_1$  に相当する点までの距離であり、 $r_2$  も同様である。  $e_0(\omega)$  は送信波であり、 $w_{i,j}$  は図 8 に示す通りである。g(r) は 2 次元問題のグリーン関数であり 0 次第 2 種ハンケル関数  $H_0^{(2)}(\cdot)$ を用いて次式のとおりとする。

$$g(r) = \frac{1}{4j} H_0^{(2)}(kr)$$
(5)

ここで *k* は *ω* に対応する波数である。式 (4) は図 8 の右側の 鏡面に対して対称な位置に送信アンテナを仮想的に設置し、鏡







面のみを開口面とする場合に考えうる全伝搬経路のグリーン関数 g(r)を足し合わせて散乱波形を計算している。左側の鏡面に対しても同様の処理を行い、両者を加算して推定波形としている。アンテナと目標物体が十分遠方、かつエッジに電流が流れないという近似をしているため、実際の散乱波形を完全に表現できるわけではない。しかしながら、近似に必要な条件を満たしている場合には $10^{-3}$ 波長程度の高精度な到来時刻推定が実現されることを数値シミュレーションにより明らかにしている。本手法は2次元問題を想定しており、実験による検証が難しいため、第6章に述べる通り実験データを2次元問題近似可能なように処理する必要がある。

## 5. SEABED 法の実験データへの適用

#### 5.1 疑似波面のと不規則成分と形状推定精度

本稿では目標物体は x 方向に長い直径 92mm(1.2 波長) の金 属パイプの形状推定を行なう。使用する目標物体の真の形状を 図 9 に示す。 実験データより抽出される疑似波面に IBST を



図 8 エッジ散乱波形推定のためのアンテナと物体位置関係







図 10 実験データより抽出される疑似波面



図 11 SEABED にる推定目標形状

適用することで推定される目標形状を図11に示す。一般に実 験データから得られる疑似波面は雑音やジッタの影響により不 規則な成分を有する。IBSTは疑似波面の1階導関数を必要と するため、SEABED法を直接適用すると不規則成分の影響に より像が著しく劣化する問題がある。

5.2 平滑化による SEABED 法の安定化

前節で述べた通り、疑似波面の不規則成分により SEABED



図 12 2 階導関数に基づく平滑化による推定像

法の推定形状が劣化する問題がある。この影響を抑えるため に疑似波面の平滑化を行なうことが有効である。なぜなら、 SEABED 法では目標物体のエッジ位置を推定することが可能 であるため、目標物体を滑らかな複数の領域に分割し、それぞ れの疑似波面に対し平滑化を行なうことで物体像の分解能を大 きく劣化させずに安定化が実現されるためである。

平滑化を行う際の相関長を決定する必要がある。疑似波面の 2 階導関数が小さい場合は平面と見なせるため、長い相関長を 利用した平滑化が可能である。ここでは2階導関数によって適 応的に相関長を変化させる平滑化手法を考える。簡単のため、 物体形状が x 方向に変化しない凸形状であることを前提とす る。この場合、X,Yの2変数を持つ関数Zのヘッセ行列は対 角項のみ非零の値を持つ。この項を以下では単に2階導関数と 呼ぶ。まず疑似波面から2階導関数を直接求め、それに対応す る相関長の平滑化を行なう方法を考える。ここでは与えられた 相関長を有するガウスフィルタを用いて平滑化を行なう。相関 長の決め方は次の通りである。疑似波面を局所的に2次の項の 係数 a を有する 2 次関数で近似した場合、相関長 c は歪み許容 値を $\delta$ として $c = \sqrt{12\delta/a}$ と表わされる。ここでは歪み許容値 を 0.03 波長とする。この方法によって平滑化を行なう場合の SEABED 法による推定像を図 12 に示す。同図のように 2 階導 関数は不規則成分の影響を強く受けるために像の劣化は平滑化 前から改善しない。

5.3 疑似波面の特徴を利用した適応平滑化法

本節では提案平滑化法を説明する。疑似波面の2階導関数に 対し次の不等式が成り立つ。詳細は付録で述べる。

$$\frac{\partial^2 Z}{\partial Y^2} < \frac{1 - (\partial Z / \partial Y)^2}{Z} \tag{6}$$

式(6)により2階導関数が疑似波面及びその1階導関数によっ て評価可能となる。1階導関数は雑音の影響を受けるものの2 階導関数と比較すると安定に求めることができる。図12では 式(6)の左辺の2階導関数を直接求めて用いていたが、提案法 ではその代わりに式(6)の右辺を用いて平滑化を行なう。この 方法を用いる場合、一般に2階導関数を大きく見積もることと なる。2階導関数を小さく見積もる場合は疑似波面の曲率の大 きな部分の情報を失う恐れがあるのに対し、大きく見積もる場 合はその危険が少ない。提案平滑化法により得られる推定形状 を図13に示す。提案法によりパイプの形状が正しく推定され、 S/N比に換算して約5dBのゲインが得られる。



#### 6. 散乱波形推定法の実験データへの適用

本節では散乱波形推定法を実験データへ適用し、その特性を 確認する。我々の提案してきた散乱波形推定は 2 次元問題にの み適用可能である [11]。一方、実験で取得されるデータは 3 次 元問題として取り扱わなければならない。このため、近似的に 2 次元問題として取り扱うために実験データを処理する必要が ある。使用する 2 次元問題化処理は次の通りである。受信アン テナを固定し、偏波方向に送信アンテナを走査し、パルスの送 受信を繰り返し行う。取得されるデータを足し合わせることで 一つの波形を得る。この操作を偏波と直行方向に送受信アンテ ナをシフトさせながら行う。図 14 に 2 次元問題化処理の説明 図を示す。同図では、x に受信点を固定し、y 方向に送信アン テナのみを走査する。ここでy 方向はアンテナの偏波方向であ る。送信アンテナを (x, y) に、受信アンテナを (x, 0) に配置し て測定される信号を  $e_{3d}(x, y, t)$  とする。x 座標での 2 次元問題 近似される受信波形  $e_{2d}(x, t)$  は次式で表される。

$$e_{2d}(x,t) = \sum_{i=0} e_{3d}(x,y_i,t)$$
 (7)

これにより等価的に y 方向に並べたアンテナアレイから同時に パルスの送信を行う状況を近似することができる。本稿での実 験では y 方向に間隔は 10mm で 40 点の信号を取得する。

角柱物体を用いた実験により散乱波形推定法の特性を調べる。 図 15 に物体とアンテナの位置関係を示す。物体の z 軸方向に は約 600mm を取り、波長と比較し十分長い物体を用いて 2 次 元問題を仮定する。アンテナ間の中点を提案法でのアンテナ位 置  $x_A$  と定義する。送受信アンテナは図 15 の通り配置する。ア ンテナは x 軸上を走査する。前節で述べる方法で 2 次元問題 での散乱波形を作成する。図 16 に  $x_A = 0$ mm での推定波形精 度を示す。同図より推定波形は送信波形と比較すると測定波形 に近づいていることが確認できる。このことから、実験データ に対しても散乱波形推定法が有効に機能していることが確認で きる。

### 7. ま と め

本稿では UWB パルスレーダを用いた空気中での目標形状推 定手法を扱った。UWB パルスレーダによる高精度な立体形状 推定を実現するために我々が開発してきた SEABED 法および 散乱波形推定法の両者を実験データに適用し、その特性を明ら







かにした。SEABED 法は目標物体が明瞭な境界を有するとい う条件下で目標境界と受信データの間に可逆な変換関係が成り 立つことを利用して高速な形状推定を実現することを現在まで に数値シミュレーションにより確認してきた。実験データより 抽出された疑似波面には雑音やタイミングジッタに基づく不規 則信号が含まれており、SEABED 法を直接に適用すると推定 像が不安定になることを確認した。目標物体が凸物体であれば 疑似波面の2階導関数には上限があり、滑らかさが保証される ために平滑化が有効であることを示した。この2階導関数の上 限を2階導関数の代わりに使用する適応平滑化により像の安定 化が達成され、S/N に換算して5dBの改善が得られることを 示した。SEABED法の高精度化のための散乱波形推定法につ いても実験データへの適用を行い、その特性を確認した。本手 法は2次元問題にのみ適用可能であるため、近似的に2次元問 題として取り扱えるように実験データを処理した。散乱波形推 定法によりエッジ回折波を推定し、送信波形よりも実際の波形 に近づいていることを確認した。今後は、両手法を融合して高 精度な目標形状推定手法を開発することが課題である。その際、 実験および数値計算の双方を用いて検討を進める必要がある。

#### 謝 辞

本研究を遂行するにあたり京都大学生存圏研究所全国共同利 用・マイクロ波エネルギー伝送実験装置 (METLAB) を使用さ せて頂き、関係各位には貴重なご協力・ご助言を賜りました。 ここに厚く御礼申し上げます。本研究の一部は 21 世紀 COE プ ログラムによる (Grant No. 14213201)。

#### 文 献

- T. Sakamoto and T. Sato, "A target shape estimation algorithm for UWB pulse radar systems based on boundary scattering transform," IEICE Trans. Communications, vol. E87-B, no. 5, 2004.
- [2] T. Sakamoto and T. Sato, "A fast algorithm of 3dimensional imaging for pulse radar systems," Proc. 2004 IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, vol. 2, pp. 2099–2102, June, 2004.
- [3] D. Nahamoo, S. X. Pan and A. C. Kak, "Synthetic aparture diffraction tomography and its interpolation-free computer implementation," IEEE Trans. Sonics and Ultrasonics, vol. 31, no. 4, pp. 218–229, 1984.
- [4] M. B. Dobrin and C. H. Savit, Introduction to Geophysical Prospecting, Fourth Edition, McGraw-Hill, New York, 1988.
- [5] J. V. Candy and C. Pichot, "Active microwave imaging : A model-based approach," IEEE Trans. Antennas Propagat., vol. 39, no. 3, pp. 285–290, 1991.
- [6] P. Chaturvedi and R. G. Plumb, "Electromagnetic imaging of underground targets using constrained optimization," IEEE Trans. Geosci. Remote Sensing, vol. 33, no. 3, pp.551– 561, 1995.
- [7] T. Sato, K. Takeda, T. Nagamatsu, T. Wakayama, I. Kimura and T. Shinbo, "Automatic signal processing of front monitor radar for tunnelling machines," IEEE Trans. Geosci. Remote Sens., vol. 35, no. 2, pp. 354–359, 1997.
- [8] T. Sato, T. Wakayama and K. Takemura, "An imaging algorithm of objects embedded in a lossy dispersive medium for subsurface radar data processing," IEEE Trans. Geosci. Remote Sens., vol. 38, no. 1, pp. 296–303, 2000.
- [9] T. Takenaka, H. Jia and T. Tanaka, "Microwave imaging of an anisotropic cylindrical object by a forward-backward time-stepping method," IEICE Trans. Electron., vol. E84-C, no. 12, pp. 1910–1916, 2001.
- [10] T. Sakamoto and T. Sato, "A phase compensation algorithm for high-resolution pulse radar systems," IEICE Trans. Communications, vol. E87–B, no. 11, pp. 3314–3321, Nov., 2004.
- [11] 木寺 正平, 阪本 卓也, 佐藤 亨, "UWB パルスレーダーのた めの高精度物体形状推定法の開発," 電子情報通信学会 技術研 究報告 アンテナ・伝播研究会 Technical report of IEICE A・ P2004-131, vol. 104, no. 283, Sep., 2004.

- [12] T. Sakamoto and T. Sato, "An estimation method of target location and scattered waveforms for UWB pulse radar systems," Proc. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, pp. 4013– 4015, 2003.
- [13] T. Sakamoto and T. Sato, "An estimation method of target location and scattered waveforms for UWB pulse radar systems," IEICE Trans. Communications, vol. E87–B, no. 6, pp. 1631–1638, June, 2004.

## 付 録

ここで式 (6) の導出を行なう。目標境界面 *z* 及び疑似波面 *Z* が  $\partial z/\partial x = 0$  及び  $\partial Z/\partial X = 0$  を満たす場合、それぞれ *y* 及 び *Y* のみの関数となる。この場合、疑似波面の 2 階微分につ いて次式が成り立つ。但し、 $Z_{YY}$  は *Z* の *Y* に関する 2 階導関 数であり、他も同様である。

$$Z_{YY} = \frac{z_{yy}}{(1+z_y^2)^{3/2}(1+z_y^2+zz_{yy})}$$
(8)

ここで目標物体が凸形状であるため  $z_{yy} > 0$ 及び z > 0が成り 立つため  $Z_{YY} > 0$ がいえる。逆に、目標境界面の 2 階導関数 について次式が成り立つ。

$$z_{yy} = \frac{Z_{YY}}{(1 - Z_Y^2)^{3/2} (1 - Z_Y^2 - ZZ_{YY})}$$
(9)

ここで  $Z_{YY} > 0$  及び  $z_{yy} > 0$  より次式が結論できる。

$$0 < Z_{YY} < \frac{1 - Z_Y^2}{Z} \tag{10}$$

こうして式(6)が導かれる。