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Abstract—Ultra wideband (UWB) radar systems are a promis-
ing technology for surveillance systems. Many of the existing
imaging algorithms are based on large-scale antenna arrays that
are not necessarily practical because of their complexity and
high cost. To resolve this difficulty, we had previously proposed
an UWB radar imaging algorithm that estimates unknown 2-
dimensional target shapes and motions using only three antennas.
In this paper, we extend this method so that 3-dimensional
target shapes and motions can be estimated. Some numerical
simulations establish that the proposed method can accurately
estimate the target shape even under extreme conditions.

Index Terms—ultra-wideband, radar imaging, inverse scatter-
ing, 3-dimensional, walking

I. INTRODUCTION

Imaging radars are a promising core technology for next-
generation surveillance systems because these can be placed
where camera-based systems are not appropriate for use be-
cause of resulting privacy issue. It is possible to obtain shapes
of human bodies without the associated surface textures by
using radars, thus avoiding such concerns. UWB (Ultra Wide-
Band) radar is a favored device for this purpose because of
its high resolution ranging capability. A variety of imaging
algorithms have been proposed for UWB radar systems [1],
[2], [3], [4], [5], [6]. However, these conventional imaging
methods are based on large-scale antenna arrays, which in-
evitably make the system too costly to apply in commercial
surveillance systems.

To solve this problem and realize a simpler low-cost radar
system, we have developed a radar imaging method [7], [8], [9]
that exploits the motion of targets, for instance human bodies,
rather than a large antenna array setup. Our previous imaging
method uses only three antennas, but was still capable of esti-
mating 2-dimensional motion and shapes of targets. However,
it is more desirable to obtain 3-dimensional, rather than 2-
dimensional, images for actual surveillance applications.

The paper expands the conventional 2-dimensional imaging
method to estimate 3-dimensional target motions and shapes.
In the conventional 2-dimensional imaging method, a circular
model with three parameters was used to approximate a local
shape of targets. In our proposed 3-dimensional method, we
use a spheroidal model based on five parameters. Therefore,
we assume a radar system with five antennas to solve these five

unknowns using received signal data. The performance of the
proposed methods is investigated using numerical simulations.

II. SYSTEM MODEL

Figure 1 shows a schematic of the proposed radar system,
in which five antennas are installed on a wall of a passage
way. The system model is assumed to be 3-dimensional
instead of the 2-dimensional system assumed in previous
work [7]. The target is modeled as a smooth, convex ob-
ject with a sharp boundary profile. A reference point on
the target surface is chosen to represent the target position
Xm(t) = (Xm(t), Ym(t), Zm(t)) at time t. The target motion
Xm is assumed to be unknown; only a translational motion
without rotation is assumed. The five antennas are in a
cruciform arrangement in the x − z plane with separation
Δx, i.e. the five antenna coordinates for #1, #2, · · ·, #5
are (Δx, 0, 0), (0, 0, 0), (Δx, 0, 0), (0, 0,Δx), (0, 0, Δx). Each
antenna is assumed omni-directional and connected with a
transmitter and receiver with switches, functioning as five
independent mono-static radar systems. Transmitted signals
are modulated so as not to interfere with the others. The pulse
repetition period is set to Δt. The distance between the i-th
antenna and the corresponding scattering center at time t is
defined as Ri(t) for i = 1, 2, · · · , 5. Our purpose in the paper
is to estimate the target motion Xm(t) and shape using these
five range data.

III. CONVENTIONAL TWO-DIMENSIONAL IMAGING

METHOD

Our previous work [7] proposed a 2-dimensional imaging
method. The method uses three antennas #1, #2, and #3 to
estimate the shape of a target in non-rotating translational
motion. The motion is assumed to be 2-dimensional as well,
which means Zm(t) = const. in the above-defined motion.
The method approximates the local shape of a target with
circles termed a curvature circle. A curvature circle has three
parameters, a curvature center c(t) = (cx(t), cy(t)) and a
curvature radius a(t). These parameters are determined by
solving the following set of equations.
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Fig. 1. Proposed radar system for surveillance systems.
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R1(t) =
√

(cx(t) + Δx)2 + (cy(t))2 − a(t)
R2(t) =

√
(cx(t))2 + (cy(t))2 − a(t)

R3(t) =
√

(cx(t) − Δx)2 + (cy(t))2 − a(t)
(1)

Note that the motion c(t) contains not only the target motion
X(t) but also the relative motion of a scattering center along
the target surface. Therefore, (cx(t), cy(t)) cannot be used
directly as an estimate of the target motion.

To overcome this difficulty, the proposed method calculates
an average radius of curvature with a(tn) and a(tn+1) as
ā(tn+ 1

2
) = (a(tn) + a(tn+1)) /2. Then, c(tn) and c(tn+1) are

recalculated as c̄(tn) and c̄(tn+1), subject to the condition that
the radius of curvature is equal to ā(tn+ 1

2
) with LMS (Least

Mean Square) criteria. An instantaneous velocity vector vn+ 1
2

is defined as

vn+ 1
2

= (c̄(tn+1) − c̄(tn)) /Δt. (2)

This operation enables the separation of the target motion
X(t) from the relative motion of the scattering center because
the motion of scattering center strongly affects the radius
of curvature a(t). In addition, this radius of curvature a(t)
together with the target motion X(t) have a great effect on
the center of curvature c(t). Figure 2 shows a schematic of
this procedure, where three circles of curvature for successive
time shots t = tn, tn+1, tn+2 have been drawn with dashed
lines. The averaged circles of curvature using successive pairs
t = tn, tn+1 and tn+1, tn+2 are depicted with solid lines. Each
velocity vector associated with an average circle is drawn as
the arrow from that circle’s center to its successive center.

Finally, we integrate the instantaneous velocity vector using
the summation form as

X̄(tN+ 1
2
) =

N∑
n=1

vn+ 1
2

(3)

to obtain an estimate of the target location X̄(t). Note that the
initial value X(0) does not have any effect on imaging results

t=tn

t=tn+1

t=tn+2

Circle of Curvature

Averaged Circle of Curvature

Fig. 2. A schematic of the averaging circles of curvature in the proposed
method.

because it affects only the location of the estimated image.
By compensating for this estimated target motion X̄(t), the
estimated scattering centers are shifted to the right at t = 0 to
form a 2-dimensional image.

IV. PROPOSED THREE-DIMENSIONAL IMAGING

ALGORITHM

We present an extended version of the above method appli-
cable to three-dimensional cases. This method approximates
the local shape of the target with a spheroid instead of a circle.
A spheroid is a surface that is obtained by rotating an ellipse
about its principal axis. We use all five antennas to estimate
the five parameters of a spheroid expressed using a center
c(t) = (cx(t), cy(t), cz(t)), and the respective horizontal and
vertical radii a(t) and b(t) as

(x − cx(t))2

a(t)2
+

(y − cy(t))2

a(t)2
+

(z − cz(t))2

b(t)2
= 1. (4)

Using the five ranging data Ri(t) (i = 1, 2, · · ·, 5) from the
five antennas, these five spheroid parameters are determined
with Brent’s method [10]. Although translational motion X(t)
can be estimated approximately using these parameters, it is
not identical to the center position c(t) for the same reason
as in the two-dimensional case.

The proposed method calculates averaged horizontal and
vertical radii using a couple of adjacent samples as ān+ 1

2
=

(a(tn) + a(tn+1))/2 and b̄n+ 1
2

= (b(tn) + b(tn+1))/2. These
averaged radii are then used for recalculating the center
positions c̄(tn) and c̄(tn+1) with estimated scattering center
positions pi(t) = (pxi(t), pyi(t), pzi(t))(i = 1, 2, .., 5). The
center positions c̄(tn) and c̄(tn+1) are optimized with other
parameters fixed as a = ān+ 1

2
and b = b̄n+ 1

2
to minimize

the distance between the spheroid surface and the scattering
centers pi(tn) and pi(tn+1)(i = 1, 2, .., 5). Finally, these
center positions c̄(tn) and c̄(tn+1) are used to calculate an
instantaneous velocity vector vn+ 1

2
= (c̄(tn+1)− c̄(tn))/Δt).

Figure 3 shows the difference between the methods
with/without the averaging process applied to the horizontal
and vertical radii. The averaging of radii was introduced in our
proposed method because it can accurately estimate the target
translational motion by eliminating the motion of the scattering
center on a target surface. This averaging process displaces the
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Fig. 3. Estimated velocity vectors using the motion estimation methods
with/without the radii averaging.

velocity vectors as shown for the spheroid at t = tn+1 in the
lower image in Fig. 3. Next, these estimated velocity vectors
are summed to obtain the target motion. Finally, the final
image is obtained by shifting the scattering center positions
pi(t)(i = 1, 2, .., 5), compensating for the estimated target
motion.

After obtaining the image, we apply an artifact suppression
method. This method eliminates the point xi that satisfies

min
j

|xi − xj | > Δd (i �= j). (5)

This method is based on the assumption that most of the
artifacts are isolated from other points. Thus, a point sepa-
rated from other points with minimum Δd-proximity can be
eliminated. The value Δd is empirically determined.

V. PERFORMANCE EVALUATION OF THE PROPOSED

METHOD

We apply the proposed method to an ellipsoidal target
to verify its effectiveness. Figure 4 depicts the assumed
ellipsoidal target in translational motion; the ellipsoid has
a vertical aspect with x-axis radius A = 0.15 m, y-axis
radius B = 0.25 m, and z-axis radius C = 0.85 m. These
parameters have been chosen in view of applications to human
body imaging. The target motion is (Xm(t), Ym(t), Zm(t)) =
(x0 +vxt, y0, z0 sin(ωt+χ0)), where x0 = 2.0 m, vx = −1.0
m/sec, y0 = 1.0 m, z0 = 0.25 m, ω = π/4 rad/sec, χ0 = π/2
rad. The antenna separation interval is Δx = 0.5 m. First,
we develop an imaging result under noiseless environments

-2-2 -1-1  0 0  1 1  2 2  0 0

 1 1

 2 2
-1-1

 0 0

 1 1

x [m]x [m]

y [m]y [m]

z [m]z [m]

Fig. 4. Assumed target shape and motion for performance evaluation.

using the data sampling interval of Δt = 4 msec over a
sampling period −2 sec ≤ t ≤ 2 sec. The parameter for
artifact suppression is set at Δd = 5.0 mm; throughout this
paper, Δd is fixed at this value.

The proposed method optimizes the spheroidal target using
the received data Ri(t)(i = 1, 2, .., 5), snapshots of which
are shown in Fig. 5. In the figure, the solid and broken lines
are the respective actual and estimated target shapes for each
time step. These shapes are not identical because our model
is spheroidal, not ellipsoidal, which means that our method
estimates only a local shape of the target rather than the entire
shape. The white dots denote the scattering centers calculated
using the received data.

The solid line in Fig. 6 shows the actual target motion. The
dashed lines 1 and 2 in Fig. 6 show the central position of the
spheroidal model estimated without/with the proposed radii
averaging process. The RMS error values of the target motion
without/with the proposed radii averaging process are 162.8
mm and 21.5 mm, respectively. This shows the averaging
process improves the motion estimation accuracy.

Finally, we estimate the target shape by compensating for
the estimated motion using the estimated scattering center
points. Figure 7 shows the estimated target shape, where the
RMS error of the image is 8.2 mm. In this figure, we see five
lines that correspond to the five scattering centers estimated
in our method. Since the target moves horizontally, the image
has only horizontal profiles as well. This result establishes that
our proposed method is capable of estimating an unknown 3-
dimensional target motion and ellipsoidal shape accurately.

VI. PERFORMANCE OF THE PROPOSED METHOD UNDER

VARIOUS CONDITIONS

A. Imaging Accuracy and Target Shape

We now calculate the imaging accuracy of the proposed
method for various values of x-axis-radius A from 0.15 m to
0.5 m. This parameter range is selected based on the statistical
range of actual human body shapes. Other parameters remain
fixed with those values set in the previous section. Figure 8
shows A-radial dependence of the RMS errors of the various
images estimated using the proposed method. The RMS error
has a minimum value at A = 0.25 m corresponding to an
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Fig. 5. Actual and estimated target shape using the proposed method.
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Fig. 6. Estimated translational motion of a target.

ellipsoid target with A = B. Since the proposed method
assumes a spheroidal model, this specific case corresponds to
the ideal case where the model is identical to the actual target
shape. For target shapes with A �= B, the RMS error is larger
but is less than 11.5 mm over the selected parameter range.
This is accurate enough for most applications presumed in the
paper.

B. Imaging Accuracy and Target Motion

Next, we investigate the imaging accuracy of the proposed
method for various target motions. We assume a target shape
as an ellipsoid with A = 0.15 m, B = 0.25 m and C =
0.85 m. The target motion is (Xm(t), Ym(t), Zm(t)) = (x0 +
vxt, y0, z0 sin(ωt+χ0)), where x0 = 2.0 m, vx = −1.0 m/sec,
y0 = 1.0 m, ω = π/2 rad/sec, χ0 = 0 rad are assumed. We
vary the parameter z0 from 0 m to 0.5 m, which corresponds
to a vertical springing motion in normal human gaits.

Figure 9 shows the relationship between the RMS error of
the proposed method and the vertical amplitude z0. The RMS
error values for z0 = 0 m and z0 = 0.5 m are 5.4 mm and
9.2 mm, respectively. The accuracy is degraded as the vertical
motion becomes larger.

C. Imaging Accuracy and Antenna Intervals

We investigate the imaging accuracy of the proposed method
for various antenna intervals. The target shape is assumed to
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Fig. 7. Estimated target image using proposed method.
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Fig. 8. Relationship between imaging accuracy and target’s x-axis radius.

be the same as in the previous section. The target motion is
assumed as (Xm(t), Ym(t), Zm(t)) = (x0+vxt, y0, z0), where
x0 = 2.0 m, vx = −1.0 m/sec, y0 = 1.0 m, and z0 = 1.0 m.
This modeled motion is uniform along a straight line parallel to
the antenna baseline. Here we assume a noiseless environment.
Figure 10 shows the RMS error of the motion analyzed by the
proposed method for various antenna intervals 0.1 m ≤ Δx ≤
1.0 m

Clearly, as the antenna interval increases, the imaging error
becomes larger mainly for the following reason. For a large
antenna interval, the scattering center points are well separated
from one another. Because the proposed method approximates
the local shape of a target by model fitting, the separated
scattering centers do not represent a local shape, making it
difficult to apply this approach. As a result, imaging accuracy
deteriorates for large Δx.

Note also that within a noisy environment, a small antenna
interval increases imaging error sensitivity to background
noise. Therefore, an optimum antenna interval should be
determined based on the actual signal-to-noise (S/N) ratio of
the data.

D. Performance Evaluation in Noisy Environment

Finally, we investigate the imaging accuracy of the proposed
method in noisy environments. The assumed target shape and
motion will be assumed the same as in the previous section.
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Fig. 9. Relationship between imaging accuracy and vertical target motion
parameter z0 .
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Fig. 10. Relationship between imaging accuracy and antenna interval Δx.

We set the antenna interval Δx = 0.5 m. White Gaussian
random components are added to each of the range data
Ri(t)(i = 1, 2, .., 5) to simulate a noisy environment. The
relationship between the squared errors in the range data and
the received signal power is linear for large S/N as in [11]. The
S/N is defined as the signal and noise power after applying the
matched filter. The signal power is calculated based on a free
space model, in which the target cross-section dependency is
not taken into account. We assume the lowest S/N to be 15 dB,
for which the range data Ri(t) has its maximum value. Figure
11 shows the estimated image under these conditions. The
RMS error of the image is 6.7 mm, which demonstrates that
the proposed method is capable of estimating target shape and
motion even in noisy environments. Further study is needed
to clarify the necessary system’s requirements and minimum
S/N for which the proposed method can be applied.

VII. CONCLUSION

In this study, we proposed an imaging method for simple
UWB radar systems with five antennas by using the motion of
a target. This method estimates a 3-dimensional target motion,
and then obtains 3-dimensional target images by compensating
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Fig. 11. Estimated target image in a noisy environment with the lowest S/N
= 15 dB.

for the motion. This approach is an extension of the conven-
tional 2-dimensional imaging method for three-antenna radar
system. The proposed method assumes a spheroidal model
to approximate the local shape of a target. The performance
of the proposed method has been verified using numerical
simulations. The imaging accuracy was also quantitatively
evaluated for various models. The simulation results showed
that the proposed method can estimate 3-dimensional target
shapes in a number of scenarios.
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