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Abstract—Ultra wide-band (UWB) radar is an attractive tech-
nology in a variety of applications including security systems. In
that pursuit, it is essential to develop low-cost systems that pro-
duces clear target images. We have recently developed an imaging
method for a simple radar system with a single antenna, namely
the frequency-domain DORT (French acronym for decomposition
of the time reversal operator) [1] by extending the conventional
DORT [2], [3], [4]. Since a point target is assumed, this method
cannot produce clear images for a finite-sized target. As a result,
images are blurred and compromise image resolution. This study
proposes a radar imaging method that can be applied to a finite-
sized target. The method modifies the original frequency-domain
DORT by introducing a compensation process for the waveform
distortion caused by finite-size effects. The effectiveness of the
modified method is established with numerical simulations.

I. INTRODUCTION

Ultra wide-band (UWB) radar is a promising technology
that is useful in a variety of applications including surveillance
systems. To produce clear images of surveillance targets
reliable high-resolution radar imaging systems need to be
developed. In search of such systems, Devaney et al. [2]
developed the DORT method, which starts by assuming an
antenna array and monochromatic sinusoidal signals. It has
high-resolution capability by separating multiple propagation
paths by applying the singular value decomposition (SVD) to
a matrix generated from bi-static measurements with the array
antenna [3], [4]. The columns and rows of this matrix corre-
spond to the transmitting and receiving elements, respectively.
The matrix for DORT can be generated differently; it can be
produced by assigning the column and row to the element
number and frequency number respectively, as proposed by
Teixeira et al. [5]. Unlike the original DORT, the revised
DORT can apply to wideband signals.

These high-resolution DORT methods require antenna array
systems that make the system costly and impractical. The
need to simplify the system and lower costs is imperative if
these methods are to be applied to actual security systems;
clearly, the number of antennas must be reduced. Sakamoto
and Sato [1] extended the original DORT so that it can
be applied to a simple system with a single antenna. Their
method, called frequency-domain DORT, generates a matrix
to be decomposed by SVD solely in the frequency domain.
Numerical simulations and experiments have verified that

the frequency-domain DORT achieves accurate imaging in a
multipath environment.

Because the original DORT assumes point-like targets and
cannot be applied to finite-sized targets, images obtained using
this method are degraded and severely blurred. To tackle this
problem, we extend the original frequency-domain DORT by
modifying the waveform distorted due to finite-size effects.
We measure in advance the scattered waveforms from various
sized targets. Scattered signals in a multipath environment are
processed using these waveforms with the frequency-domain
DORT.

II. SYSTEM MODEL

Figure 1 shows the set-up of the system assumed in this
study; a 2-dimensional system comprising a TM (Transverse
Magnetic) wave transmitter/receiver is used to estimate the
2-dimensional position of a metallic target. This system is
composed of a transmit antenna Tx, a receiving antenna Rx,
a plate W made of PEC (Perfect Electric Conductor), and a
point-like PEC target P.

The received signals are calculated using FDTD (Finite
Difference Time Domain), with 6-layered PML (Perfectly
Matched Layer) for absorbing boundaries and a grid size
of 1.0 mm. Propagation and scattering field are numerically
calculated in the process of imaging in the DORT. The Green’s
function of a 2-dimensional scalar wave is expressed with a
Hankel function of the first kind with argument based on the
distance of the propagation path. Scattering by a point target
is modeled assuming the Born approximation

S(ω) =
∫

ω2σ(r′)G2(ω, r, r′)dr′, (1)

where σ(r′) is the relative permittivity at position r′. The
transmitted pulse is a UWB pulse sT(t), which is assumed
to be a mono-cycle pulse. We also assume that the relative
locations of antennas and a plate are known. The direct wave
sD(t), propagating without scattering from Tx to Rx, the
reflected wave sW(t) from plate W are measured and stored
in memory prior to actual measurements. These waveforms,
sD(t) and sW(t), are subtracted from the received signal s0(t)
yielding s(t) = s0(t) − sD(t) − sW(t). We assume that s(t)
contains four waves, namely
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Fig. 1. System model of a multipath scattering UWB radar.

• s1(t) Tx-P-Rx,
• s′2(t) Tx-P-W-Rx,
• s′′2 (t) Tx-W-P-Rx, and
• s3(t) Tx-W-P-W-Rx,

where the paths corresponding to s′2(t) and s′′2 (t) are traversed
in opposite directions. As a consequence, these echoes cannot
be separated if the system satisfies the condition appropriate
to the Lorentz reciprocal theorem. Hereafter, by introducing
s2(t) = s′2(t) + s′′2 (t), just three paths are considered. Ad-
ditionally, note that this model neglects higher-order multiple
scattering components.

III. CONVENTIONAL TIME-REVERSAL IMAGING AND

DORT

TR imaging, using the Lorentz reciprocal theorem, is dis-
tinguished by its simple signal processing. The principle of
TR is described below. Let s(t) be the received signal at Rx
when a pulse is transmitted from Tx at t = 0. Assume that
s(−t) is transmitted from Rx, then a strong signal is received
at Tx at t = 0.

Next, we introduce G(ω, r, r′), the Green’s function asso-
ciated with propagation through the medium with inclusion
of multipath scattering effects. Using ST(ω), the Fourier
transform of a transmitted signal sT(t), then S(ω), the Fourier
transform of the received signal s(t), is expressed as

S(ω) = ω2G2(ω, r, r′)ST(ω), (2)

disregarding constant terms, and where the positions of both
Tx and Rx are taken to be r while that of the point target
is r′. Here, we have assumed Rayleigh scattering from a tiny
scatterer. Note that the time reversal operator is equivalent to
complex conjugation. Therefore, the image ITR(x) from TR
method is obtained as

ITR(x) =
∫

S∗ST(ω)(ω)G2(ω, r, x)dω, (3)

=
∫

ω2 |ST(ω)|2 G∗2(ω, r, r′)G2(ω, r, x)dω.(4)

ITR(x) in Eq. (4) takes its maximum value when x = r′

because the integrand is a real function. As mentioned above,
this classical TR method is based on matched filter theory.

DORT is an extension of TR imaging that introduces SVD
to improve the resolution. With a space-space matrix KSS,
DORT assumes that a sinusoidal wave is transmitted, and there
are multiple transmitting and receiving antennas. Element ki,j

of KSS is defined as the received complex signal propagating
between the i-th transmitting antenna and the j-th receiving
antenna. Here, ki,j is expressed as

ki,j =
K∑

l=1

σlgi,lgl,j , (5)

where gi,l is the Green’s function between the i-th antenna
and the l-th target, and σl is proportional to the scattering
intersection of the l-th target. The three terms in Eq. (5) can
be divided into three matrices as

KSS = UΣV H, (6)

where U and V are composed of gi,l and gl,j, respectively.
Here, Σ is a diagonal matrix consisting of diagonal elements
sigmal . The Green’s function for each propagation path is
divided into two matrices U and V , thus enabling an imaging
similar to the classical MUSIC method because we can derive
a noise subspace by checking the elements of Σ. Although this
method works well in the assumed model with a sinusoidal
wave and multiple antennas, it cannot be applied to our system
with a single antenna. For this reason we need to introduce
the frequency-domain DORT discussed in the next section.

IV. FREQUENCY-DOMAIN DORT

S1, · · · , SN are defined as the respective values of the
received signal S(ω) in the frequency domain at ω1, · · · , ωN .
The matrix KFF is defined as

KFF =

⎡
⎢⎢⎢⎣

S1 S2 · · · SL

SL+1 SL+2 · · · S2L

...
...

...
...

SN−L+1 SN−L+2 · · · SN

⎤
⎥⎥⎥⎦ , (7)

where the rows and columns correspond respectively to coarse
and fine changes in frequencies. We assume N = L2 for
simplicity. For comparison with the conventional DORT, Fig. 2
shows the SVD of KFF. The Green’s function can be approx-
imately decomposed into two parts, a function of a coarse
frequency ω and one of a fine frequency Δω. With this
approximation, the Green’s function for each propagation path
can also be divided into two, the associated functions forming
the basis of the frequency-domain DORT.

First, the frequency-domain DORT applies SVD to KFF as

KFF = UΣV H, (8)

where Σ is a diagonal matrix with singular values. The left
and right singular matrices U and V correspond to coarse and
fine frequencies, respectively. As in the conventional DORT,
we adopt small L − PK singular values to estimate noise
subspaces; where P is the number of multipaths for each point-
like target, and K the number of targets. In this paper, we
assume P = 3 and K = 1, choosing left and right singular
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Fig. 2. Singular value decomposition of a space-space matrix in the
frequency-domain DORT.

vectors, uPK+1 · · ·uN and vPK+1 · · ·vN , respectively, as
base vectors for a noise subspace. The image from the left
singular vectors is

IL(x) =
1

L∑
i=PK+1

P∑
p=1

∣∣uH
i gp(x)

∣∣2 /
∣∣gp(x)

∣∣2
, (9)

where gp is the L-dimensional vector constructed from
values of the Green’s function for the p-th path at
ω1, ωL+1 · · · , ωN−L+1. The image IR(x) can be obtained
similarly from the right singular vectors. We obtain the final
image from their product IDORT(x) = IL(x)IR(x).

V. PROPOSED MODIFIED FREQUENCY-DOMAIN DORT

To apply the frequency-domain DORT to a finite-sized
target rather than a point target as assumed above, a modified
frequency-domain DORT is presented. The received waveform
from a finite-sized target is different from that from a point
target.

Figure 3 shows the received signals from cylindrical metal-
lic targets of different radii r; For each signal three echoes are
seen corresponding to the three propagation paths described
above. Note that as the radius becomes larger, the echoes are
received sooner; creeping echoes are also observed for targets
of larger radius.

Figure 4 shows the images calculated using the frequency-
domain DORT for these cylindrical targets; images of the
larger targets are blurred due to waveform distortion. This is
because the frequency-domain DORT employs a vector gp

that is based on scattering from a single point target. This
is of course quite non-physical; the actual situation involves
finite-size effects.

Our modified frequency-domain DORT uses the modified
Green’s function Gm as

Gm(ω, r) = G(ω)F0(ω)/Fr(ω), (10)

G(ω) is the original Green’s function used in the conventional
frequency-domain DORT, and Fr(ω) is the Fourier transform
of the waveform scattered from a metallic cylinder with a
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Fig. 3. Received signals from a target with radius r.
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Fig. 4. Images produced by frequency-domain DORT.

radius r. This modified Green’s function is used to generate
the vector gp in Eq. (9) and subsequently to obtain sharper
images.

VI. APPLICATION OF PROPOSED METHOD

The left-hand and right-hand side images in Figs. 5, 6 and 7
are respective images produced using the original frequency-
domain DORT and the modified frequency-domain DORT, for
target radii of 30.0 mm, 50.0 mm and 80.0 mm, respectively.
These sets of images show that the modified method gives
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Fig. 5. Estimated image with the original frequency-domain DORT (left)
and the modified frequency-domain DORT (right) for a target with radius of
30.0 mm.
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Fig. 6. Estimated image with the original frequency-domain DORT (left)
and the modified frequency-domain DORT (right) for a target with radius of
50.0 mm.

sharper images than those from the conventional method. Here,
we evaluate the quality of the images using the Muller and
Buffington’s (MB) sharpness metric [6]. The q-th order of this
metric hq is defined as

hq =
1
M

M∑
m=1

Iq
m, (11)

where Im is a vector with elements corresponding to pixel
intensities normalized by the maximum pixel intensity of the
image, and M is the number of pixels in the image. The
exponent q determines the order of the statistics, meaning the
sharpness of the image for q > 2 with higher-order statistics.
Note that for this metric, small values of hq signify sharper
images. Here, we set q = 4 and evaluate image sharpness for
the images given in Figs. 5, 6 and 7; the results are displayed in
bar graph form in Fig. 8, from which it can be observed that the
modified frequency-domain DORT achieves greater sharpness
in all cases. Using our modified method, the image sharpness
of the three targets in Figs. 5, 6 and 7 is improved by factors
of 1.98, 1.78 and 1.34, respectively, over the conventional
method.

VII. CONCLUSIONS

We proposed a UWB radar imaging method to improve
image sharpness by introducing waveform compensation to
the existing frequency-domain DORT. The original frequency-
domain DORT method assumes propagation and scattering
from a point-like target, decomposing a matrix calculated in
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Fig. 7. Estimated image with the original frequency-domain DORT (left)
and the modified frequency-domain DORT (right) for a target with radius of
80.0 mm.
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Fig. 8. Comparison of sharpness for the original and modified DORT images
using the fourth-order Muller and Buffington’s sharpness metric.

the frequency-domain using the singular value decomposition.
The image is then calculated using a method based on the
orthogonality between different vector subspaces. Treating the
case of cylindrical metallic targets of different radii, this
paper calculated the received signals using the FDTD method.
The images obtained using data processed using the original
frequency-domain DORT and the modified version were com-
pared and quantified in terms of their image sharpness, thereby
demonstrating the advantage of our modified method presented
here.
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