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Abstract—Developing usable technologies for indoor target
detection is currently a topic of great interest. Ultra wide-band
(UWB) radar is promising in this regard because of its high
range-resolution. However, conventional UWB radar imaging
systems are costly and impractical since they require a large
antenna array to obtain high spatial resolution. This study
proposes a new imaging method for a simple UWB radar system
using the motion of the target. The imaging method employs
five antennas for estimating the motion of a target, including its
rotation. Previous work deals only with the translation motion
of a target ignoring the rotation, which makes the method
impractical. The proposed method, an extension of the previous
method, obtains an accurate image for an unknown-shaped target
with arbitrary translation and rotation. Numerical simulation
results show that the proposed method is able to estimate the
target’s shape and its motion.

I. INTRODUCTION

Security surveillance systems are in demand because of
increased criminal threats. Ultra wideband (UWB) radar is
a promising technology for this purpose, because of its ad-
vantages such as accurate distance measurement, which are
not found in conventional camera-based systems. Although a
number of imaging methods have been proposed, most of these
methods require large antenna arrays. For radar imaging, Jofre
et al. [1] showed that the number of antennas has a significant
effect on image quality. This means that there is a lower
bound on the number of antennas needed to obtain the required
resolution with conventional methods. In fact, Leuschen and
Plumb [2] and Yarovoy et al. [3] employed 50 and 13 antennas,
respectively, to obtain acceptable image quality in ground-
penetrating radar imaging. To realize a simple and cost-
effective UWB radar system, a new technology needs to be
developed. Huang et al. [4] introduced compressive sensing to
reduce the number of antennas. They reduced the total number
of antennas from 51 to 10 while maintaining the same sidelobe
level in the image.

Another UWB radar imaging method with a reduced num-
ber of antennas was proposed by Matsuki et al. [5]. This
method makes use of the motion of the target to reduce
the array elements and is similar to the Inverse Synthetic
Aperture Radar (ISAR) techniques [6], [7], since both employ
the motion of the target to improve image quality. However,
for our intended application, the problem is more complex,
because the target is relatively close to the antennas. This

shifts the scattering centers on the target surface, depending
on the relative positions of the antenna and target. In addition,
the target motion cannot be modeled as a simple function
because it is basically arbitrary. The method in [5] has been
shown to be effective, because the system can be simplified
and produced at a lower cost than conventional large array-
based systems. The method assumes that a target moves in an
unknown orbit, but without rotating. However, this assumption
is not always relevant, because a target can change its viewing
angle depending on its direction of movement. Since this paper
aims to develop an imaging method for a target in the near
field, the motion of the scattering center must be considered.
This study presents a UWB radar system with five antennas
for simultaneous estimation of a target’s shape, translation
and rotation. The performance of the proposed method is
established through numerical simulations.

II. SYSTEM MODEL

Assuming a 2-dimensional model for simplicity, we aim
to estimate a 2-dimensional target shape. A 5-element linear
antenna array is installed at fixed intervals of Δx = 0.2m on
a straight line as depicted in Fig. 1. The straight line could
correspond to a wall or the ceiling in a hallway, with the
problem defined as the imaging of the cross section of a human
body walking down the hallway.
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Wall

Fig. 1. Assumed system model.

Each of the antennas is connected to a UWB pulse generator
and a receiver. In addition, each antenna is operated as a mono-
static radar system with modulation that avoids interference
among the antennas. Any modulation values can be used here
as long as they are orthogonal to one another to realize a
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kind of multiple access system. Pulses are simultaneously
transmitted from each antenna at time intervals of Δt, and
echoes are received at the same antenna. The imaging methods
proposed in this paper employs only the delay time of echoes,
which must be measured accurately. The transmitted ultra-
wideband waveforms should satisfy this condition.

The target is assumed to have an unknown boundary
(X0(ξ), Y0(ξ)), where 0 ≤ ξ ≤ 2π is a parameter. The cen-
troid of the target is at the origin of the assumed coordinates.
Under this condition, we can define rotation around the origin
independently of the shape of the target. The target moves
with a translation motion (XT(t), YT(t)) and a rotation φ(t)
at time t. The target boundary (X(ξ, t), Y (ξ, t)) at time t is
expressed as

[
X(ξ, t)
Y (ξ, t)

]
= R(φ(t))

[
X0(ξ)
Y0(ξ)

]
+

[
XT(t)
YT(t)

]
, (1)

where R(φ) denotes the rotation matrix

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (2)

The distance between each antenna and the scattering center
of the target is measured as Ri(t) (i = 1, 2, · · · , 5) using
the i-th antenna at each time step tn = nΔt. The purpose of
this paper is to develop a method to estimate the translation
(XT(t), YT(t)), rotation φ(t), and shape (X0(ξ), Y0(ξ)) of a
target using the range data Ri(t) (i = 1, 2, · · · , 5).

III. PROPOSED METHOD

Matsuki [5] proposed a method for estimating a target’s
translation motion and shape, based on a fitting method using
a circle. Because a circle has three degrees of freedom, three
antennas are used. However, this method cannot estimate the
target’s rotation because of the symmetry of a circle. We
propose a new method using an ellipse rather than a circle
to estimate both the rotation and translation to obtain a target
image.

A. Motion Estimation by Optimization with an Elliptical
Shape Model

The proposed method estimates a local target shape at each
time step t = tn using an elliptical model with five parameters
a, b, x0, y0, and θ. The ellipse is expressed as(

cos2 θ

a2
+

sin2 θ

b2

)
(x− x0)2

+
(

sin2 θ

a2
+

cos2 θ

b2

)
(y − y0)2

+ sin2θ

(
1
a2
− 1

b2

)
(x − x0)(y − y0) = 1, (3)

where a and b are the long and short axes of the ellipse,
(x0, y0) is the center of the ellipse, and θ is the rotational
angle. The distance between the i-th antenna and the cor-
responding scattering center ci(a, b, x0, y0, θ) is defined as
ri(a, b, x0, y0, θ). These variables ci and ri are calculated

using the i-th antenna position xi. The scattering center
ci(a, b, x0, y0, θ) is equivalent to the point on the ellipse that
is closest to antenna xi because there is no point closer to
the antenna than the foot of a perpendicular on such a convex
curve.

We define a cost function

Fn(a, b, x0, y0, θ)

=
Na∑
i=1

|ri(a, b, x0, y0, θ)− Ri(tn)|2 , (4)

where Na = 5 is the number of antennas. By minimizing this
cost function, we determine the most likely parameter set of
an ellipse as

(an, bn, x0n, y0n, θn) = arg minFn(a, b, x0, y0, θ). (5)

To perform this optimization process, we need to calculate
the scattering center points cn,i i = 1, 2, · · · , 5 at each time
step t = tn. To calculate these scattering centers, we use the
optimized parameters of ellipse (x0n, y0n, an, bn, θn) and each
antenna’s position xi. The scattering center point cn,i is esti-
mated as the foot of the perpendicular drawn through the i-th
antenna position. This process can be computed analytically, as
detailed in the appendix. The Levenberg-Marquardt algorithm
is used to optimize Eq. (5) using the analytical expression of
the scattering centers. This Levenberg-Marquardt algorithm is
known to be fast and stable for minimization problems if the
optimum cost function value is close to zero [8].

B. Phase Ambiguity in Estimating Rotational Motion

The parameters (x0, y0) and θ correspond to the translation
and rotation of the target. Note that θ is ambiguous with an
integer-multiple of π; all models expressed with θ + mπ are
identical, where m is an arbitrary integer. Because of this
ambiguity, the estimated rotational motion can have disconti-
nuities, making it difficult to estimate the rotation accurately.
Consequently, we select the rotational angle that is closest to
the previously estimated angle as

m = arg min |θn − θn−1 + mπ|2 , (6)

where θn is the estimated rotational angle at time tn, minimiz-
ing the gap between two adjacent angles. Then, θn is updated
as θn ← θn + mπ to estimate the rotation.

C. Imaging Process Compensating for Target Motion

The target shape is obtained from the target motion es-
timated using the procedure described in the previous sec-
tions. The image is estimated from the scattering centers by
compensating for the motion. The scattering centers are used
because the elliptical model locally approximates the target
shape around the scattering centers and it is not relevant to
use the entire elliptical shape estimated from the optimization
process. Note that the scattering centers have already been
calculated in Eq. (5) because ri(a, b, x0, y0, θ) corresponds
to the distance between scattering center cn,i and antenna
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position xi. The next step is to compensate for (x0, y0) and
θ to estimate the target shape in the initial state t = 0 as[

X̂
(n,i)
0

Ŷ
(n,i)
0

]
= R(−θn)

(
cn,i −

[
x0n

y0n

])
. (7)

IV. PERFORMANCE EVALUATION THROUGH NUMERICAL

SIMULATION

A. Application to an Elliptical Target

The performance of the proposed method is evaluated
through numerical simulation. Fig. 2 shows an elliptical target
moving to the right and rotating clockwise. We set the actual
shape parameters as a = 0.15 m, b = 0.10 m, θ = −π/4 rad,
the translation as

XT = X0 + vxt, (8)

YT = YT0 + YTs sin(ω0t + χ0), (9)

and the rotation as

φ(t) = φ0 sin(ωφt), (10)

where X0 = −0.4 m, vx = 2.0 m/sec, YT0 = 0.5 m, YTs =
0.1 m, ω0 = 2π rad/sec, χ0 = π/3 rad, φ0 = 1.3π rad, and
ωφ = π rad/sec. The sampling interval is set as Δt = 5.0
msec.
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Fig. 2. Assumed elliptical target shape and motion with rotation.

The five triangles on the x-axis in Fig. 2 show the antenna
positions. Here, we explain the results obtained by applying
the proposed method. The solid lines and white circles in this
figure show snapshots of the target and the actual center posi-
tions of the target. The black dots in Fig. 3 show the estimated
scattering centers cn,i, which are accurately located on the
actual target boundaries (solid lines). These scattering centers
are calculated using the parameters optimized in Eq. (5) at
each time step. Five scattering centers are estimated for each
snapshot, because there are five antennas. These points are
transformed to the initial positions at t = 0 by compensating
for the motion as in Eq. (7) to finally obtain the target image
in Fig. 4. The target shape is accurately estimated using the
proposed method, since the actual target shape is elliptical,
identical to the assumed elliptical model.
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Fig. 3. Estimated scattered points for an elliptical target.
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Fig. 4. Estimated elliptical target shape after compensation for the motion.

B. Application to a Slightly Distorted Non-Elliptical Target

In this section, we investigate the performance of the
proposed method for a non-elliptical target. We assume a target
shape expressed as follows:[

X0(ξ)
Y0(ξ)

]
=

[
a(1 + δ cos ξ) cos ξ

b(1 + δ cos(ξ + π/4)) sin ξ

]
. (11)

Some examples of this target shape model are depicted in
Fig. 5. The target shape is distorted as δ increases from 0.0
to 0.3, where δ = 0.0 corresponds to the elliptical model
considered in the previous section.

The measured distances to the target from the five antennas
are shown in Fig. 6. Here, the assumed target motion is the
same as in the previous section. Although the target shape
is relatively simple, the measured distances show complicated
curves because of the target motion.

Next, we present the results of the proposed method applied
to the non-elliptical target with δ = 0.1. The dashed lines in
Fig. 7 show the elliptical models optimized using the proposed
method. The estimated elliptical models are not identical to
the actual target shape, changing its size. This is because the
algorithm estimates the elliptical model using the local shape
of the target, not the whole shape. Consequently, the actual and
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Fig. 5. Assumed non-elliptical target shapes with different δ values.
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Fig. 6. Measured range data using 5 antennas for a non-elliptical target
δ = 0.1.

estimated curves match only around the scattering centers. The
estimated (x0, y0) center position of the estimated elliptical
model, corresponding to the estimated translation motion, is
shown as the dashed line in Fig. 8. The estimation accuracy is
not high enough in certain parts, x = −0.2 m and x = 0.1 m
in this figure. Fig. 9 shows the actual and estimated rotation
angles. Although the estimation is accurate at the beginning
and the end, we see that the rotational angle estimation is
poor when the translation estimation is also inaccurate, giving
a maximum estimation error of 25.8 degrees.

Fig. 10 depicts images of the actual and estimated shapes
for δ = 0.1 The whole shape is roughly estimated, but the
accuracy is lower than that for the elliptical target. This is
because an elliptical model is used for local fitting, but with
a target shape that is not elliptical. The difference between
the model and the actual target results in lower accuracy. The
root-mean-square (RMS) error is 23.34 mm for the estimation.
Note that the RMS error ε is calculated as

ε =

√√√√ 1
NaNobs

Nobs∑
n=1

Na∑
i=1

(
X̂n,i − pn,i

)2

, (12)

where X̂n,i = (X̂(n,i)
0 , Ŷ

(n,i)
0 ) is the point estimated using

the i-th antenna at the n-th time-step, and pn,i is the point on
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Fig. 7. Estimated elliptical models for non-elliptical target (δ = 0.1).
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Fig. 8. Actual and estimated translation orbits using the proposed method
for a non-elliptical target (δ = 0.1).

the actual target surface that is closest to the estimated point
X̂n,i.

V. CONCLUSION

We have proposed new imaging methods for UWB radar
using five antennas. The methods use the motion of the target,
including translation and rotation. The local shape of a target is
approximated with an ellipse, and the parameters of the elliptic
model are used to estimate the target motion. The method
is capable of estimating a target shape by compensating for
the estimated motion. The proposed method works well for
an elliptical target, and with some degree of accuracy for a
slightly distorted non-elliptical target. An important future task
is to expand the method so that it can be applied to more
distorted target shapes.
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