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Abstract—The study of UWB (Ultra Wide-Band) pulse radar
has attracted great interest in a variety of applications including
surveillance systems. The high-speed SEABED (Shape Estimation
Algorithm based on BST and the Extraction of Directly scattered
waves) imaging algorithm, is a promising candidate for the
application of UWB pulse radar in fields that require real-time
operation. However, since the SEABED algorithm uses signals
received at multiple locations, it can only be used in systems with
either array antennas or a mechanically-scanned antenna. Such
systems are inevitably costly and unrealistic for applications such
as surveillance. To overcome this problem, a revised SEABED
algorithm was developed, which relies on the motion of the target
instead of scanning an antenna. This imaging method works with
only a pair of fixed antennas, even for a target with unknown
shape and motion. The method cannot, however, be applied to
arbitrary motion, because it assumes that the target is located
on a straight line parallel to the baseline of the pair of antennas.
In this paper, we extend the revised SEABED algorithm so that
an accurate imaging can be achieved when applied to arbitrary
target motion.

I. INTRODUCTION

Surveillance technology is indispensable in ensuring safety
in our society. Although cameras are attractive for surveillance
systems due to their economical cost and high resolution, there
are places where camera-based systems cannot be used due to
privacy considerations. This shortcoming of using cameras for
surveillance can lead to a critical breach in current surveillance
systems.

Using radar systems, it is possible to obtain the shape of
an object without including its surface texture, thus avoid-
ing many privacy concerns. UWB (Ultra Wide-Band) radar
particularly, is a favorite tool for this purpose because of
its 3-dimensional imaging capability with exceptionally high
resolution. A variety of algorithms have been proposed for
imaging using UWB radar systems [1], [2], [3]. However,
these conventional imaging methods are based on iterative
procedures, that require unrealistically intensive computation
for application in surveillance systems. We have developed
SEABED, a high-speed imaging algorithm [4], [5], [6], [7],
to enable the use of UWB radar in areas that require real-
time operations, such as surveillance. By employing a UWB

radar system in conjunction with the SEABED algorithm, 3-
D images can be obtained within a short time. Hitherto, this
has been difficult to achieve with conventional camera-based
systems.

The SEABED algorithm relies on multiple signals observed
at various locations and consequently can only be used in
antenna scanning or antenna array systems. Such antenna
systems are costly and unrealistic for use in applications such
as surveillance systems. To avoid the use of antenna systems,
a revised SEABED method [8], [9], [10] has been developed,
which makes use of the motion of the target, such as a human
body, instead of antenna scanning as is the case in previous
works. The revised SEABED algorithm requires only a pair
of fixed antennas to estimate the motion and shape of a target
that moves through the radar system. However, this method
cannot be applied to arbitrary motion of the target, since it
assumes that the target moves in a line parallel to the antenna
baseline, a condition that is critical for application in a real
environment.

This paper describes a new UWB radar imaging method
obtained by extending the revised conventional SEABED
algorithm and which is capable of imaging targets with arbi-
trary motion. First, we explain the procedure of the proposed
method, followed by numerical simulations that provide quan-
titative evidence of the performance thereof.

II. SYSTEM MODEL

For the purposes of this paper we assume that the radar
antennas are installed on walls in passages as illustrated in
Fig. 1. The movement of walking is considered an unknown
function.

For simplicity, only 2-dimensional problems are dealt with
in this paper, where the objective is to estimate the shape
of a cross section of the human body. We use three omni-
directional antennas located at a particular distance X0,
whereas the conventional model [8], [9], [10] uses only a
pair of antennas. The positions of antennas #1, #2, and #3
are (−X0 , 0), (0, 0), and (X0, 0), respectively. The range
between the scattering center and each antenna at time t is
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Fig. 1. Antenna arrangement in the assumed radar system.
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Fig. 2. 2-dimensional system model.

given as R1(t), R2(t), and R3(t) for antennas #1, #2, and
#3, respectively. Let us define Δt as the IPP (Inter Pulse
Period), and tn as the n-th sampling time. Each measurement
is independent of the positions of the other antennas in the
system, which implies three mono-static radar systems instead
of a multistatic one. The implied set of radar systems is
realized by introducing a spectrum spreading modulation with
three different codes assigned to the antennas. By adopting
orthogonal codes, interference between antennas is reduced to
zero. We assume that the target motion X(t) = (X(t), Y (t))
is an unknown function of time t. Figure 2 depicts the 2-
dimensional system model adopted in this paper.

III. CONVENTIONAL IMAGING METHOD

SEABED is a fast radar imaging algorithm developed in
previous works [4], [5], [6], [7], which is applicable to the
system described above only if Y (t) is constant and X(t) is
known. The algorithm is based on a reversible transform BST
(Boundary Scattering Transform) and IBST (Inverse BST)
between the target shape and received signal, which requires
only one of the three antennas assumed in the previous section.
Here we define R(t) = R2(t), although we could equally
well have used R1(t) or R3(t). With the range R(t), the x-
coordinate of the location of antenna X(t), and the scattering
center (x(t), y(t)) the following equations of the IBST are

Actual Model of 
Moving Scattering Center

Approximation Model of 
Fixed Scattering Center

Fig. 3. Actual motion of scattering centers and an approximation with a
point-line target.

satisfied as⎧⎨
⎩

x(t) = −X(t) + R(t) dR(t)
dX(t) ,

y(t) = R(t)

√
1 −

(
dR(t)
dX(t)

)2

.
(1)

Because this IBST requires X(t), the location of the target at
time t, the SEABED algorithm cannot be used for imaging
unless the movement of the target is known.

To remove the limitation of the conventional SEABED
algorithm, a revised algorithm has been proposed [8], [9],
[10], which employs a pair of antennas to estimate the target
motion X(t) under the condition Y (t) = const. Note that
it is difficult to estimate the target location directly using a
triangulation technique, because the scattering center moves
along the target surface as depicted in Fig. 3. This figure shows
that the motion of the scattering centers cannot be ignored for
a near target of a certain size, as numerically confirmed in the
previous work[10]. It is thus imperative to distinguish between
the motion of the target itself and the motion of a scattering
center along the surface.

For example, let the pair of antennas be R1(t) and R2(t).
The revised SEABED algorithm finds a continuous function
τ (t) that satisfies

Y1(τ(t)) = Y2(t), (2)

and then the target motion X(t) is estimated as

X(t) �
∫

2X0

τ (t) − τ−1(t)
dt. (3)

Now imaging can be done with the conventional SEABED
algorithm using the estimated X(t) in Eq. (3). Although
the effectiveness of the revised SEABED algorithm has been
verified [8], [9], [10], the condition Y (t) = const. still applies,
which is not realistic in practical environments.
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Fig. 4. Schematic of the averaging circles of curvature in the proposed
method.

IV. PROPOSED IMAGING METHOD

Conventional methods enforce the unrealistic condition
Y (t) = const. In this section, we propose a new imag-
ing method that deals with arbitrary target motion X(t) =
(X(t), Y (t)), and uses three antennas as is the case in our
system model. First, the proposed method estimates an ap-
proximate center c(t) = (cx(t), cy(t)) and radius a(t) of the
curvature using R1(t), R2(t), and R3(t) obtained by solving

⎧⎨
⎩

R1(t) =
√

(cx(t) + X0)2 + (cy(t))2 − a(t),
R2(t) =

√
(cx(t))2 + (cy(t))2 − a(t),

R3(t) =
√

(cx(t) − X0)2 + (cy(t))2 − a(t).
(4)

Note that the motion of c(t) includes not only the target
motion X(t), but also the relative motion of a scattering center
(x(t)−X(t), y(t)−Y (t)) along the target surface. Therefore,
(cx(t), cy(t)) cannot be used as an estimation of target motion.

To overcome this difficulty, the proposed method calculates
an average radius of the curvature with a(tn) and a(tn+1)
as ā(tn+ 1

2
) = (a(tn) + a(tn+1)) /2. Then, c(tn) and c(tn+1)

are recalculated as c̄(tn) and c̄(tn+1), under the condition that
the radius of the curvature is equal to ā(tn+ 1

2
) when applying

LMS (Least Mean Square) criteria. An instantaneous velocity
vector vn+ 1

2
is defined as

vn+ 1
2

= (c̄(tn+1) − c̄(tn)) /Δt. (5)

This operation effectively separates the target motion X(t)
from the relative motion of a scattering center (x(t) −
X(t), y(t) − Y (t)) since the motion of a scattering center
dominates the effect on the radius of the curvature a(t).
In addition, the radius of the curvature a(t), in conjunction
with the target motion X(t), have a great effect on the
center of the curvature c(t). This procedure is illustrated
graphically in Fig. 4, in which the three circles of curvature
at t = tn, tn+1, tn+2 are depicted with dashed lines. The
averaged circles of curvature using adjacent pairs t = tn, tn+1

and tn+1, tn+2 are shown as solid lines. Each velocity vector
is represented by an arrow from the center of one averaged
circle to another.

Finally, we combine the instantaneous velocity vector with
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Fig. 5. Assumed system model for the numerical simulation.

a summation in the form

X̄(tN+ 1
2
) =

N∑
n=1

vn+ 1
2
Δt (6)

to obtain the estimation of the target location X̄(t). Note that
the initial value X(0) does not have any effect on the imaging
results because it affects only the location of the estimated
image. Using this estimated target motion X̄(t), SEABED
can now be applied to realize imaging even in the case of
arbitrary target motion.

V. PERFORMANCE EVALUATION OF THE PROPOSED

METHOD

In this section, we validate the performance of the pro-
posed imaging method by means of numerical simulations.
The assumed calculation parameters for the simulations are
described below. The target shape is assumed to be a slant
ellipse with a major axis of 0.25m and minor axis of 0.15m
as in Fig. 5. This represents an approximated size of a section
of the human body. The antenna interval is X0 = 0.5m, while
the assumed IPP Δt = 5msec. Target motion is given as
(X(t), Y (t)) = (vxt, y0 + yf sin ωt), where vx = −1.0m/sec,
y0 = 2.0m, yf = 0.5m and ω = 1.0rad/sec. This motion
model is used to investigate the performance of the imaging
method in the worst case scenario. The typical walking motion
of a human is obviously more likely to be in a straight line.
Data obtained under these conditions for −2sec ≤ t ≤ 2sec
is shown in Fig. 6. For simplicity, we assume ideal conditions
without noise.

Figure 7 shows the estimated target motion produced by the
proposed algorithm. The actual and estimated motion curves
overlap almost entirely, indicating that the accuracy of the
estimation is quite high. Figure 8 shows the target shape
estimated using the proposed algorithm. The RMS (Root Mean
Square) error of the shape estimation is about 4.0 mm, which
corresponds to 1.6% of the major axis and 2.7% of the minor
axis of the assumed target shape.
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Fig. 6. Received data R1(t), R2(t) and R3(t).
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Fig. 7. Target motion estimated using the proposed method.
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Fig. 8. Target shape estimated using the proposed method.
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Fig. 9. RMS error of the revised conventional SEABED algorithm with an
inclination angle θ for target motion along a straight line.
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Fig. 10. RMS error of the proposed method with an inclination angle θ for
target motion along a straight line.

VI. PERFORMANCE COMPARISON WITH THE

CONVENTIONAL METHOD

Next, we verify the performance limitation of the revised
conventional SEABED algorithm [10] with respect to target
motion that does not satisfy the condition Y (t) �= const. For
simplicity, we assume uniform motion along a straight line
with an inclination angle θ to the antenna baseline. The RMS
error of the shape estimation using the revised conventional
SEABED algorithm is shown in Fig. 9. Here, the target shape
is the same as in Fig. 5. The assumed model for the revised
SEABED algorithm corresponds to θ = 0◦, where the RMS
error is sufficiently small, thereby indicating that an accurate
imaging can be realized. The RMS error, however, is relatively
large even for 0◦ < θ ≤ 10◦, proving that this method does
not work at all for θ > 10◦.

In contrast, the RMS error of the shape estimation using
the proposed method under the same conditions is shown in
Fig. 10. This result confirms that the proposed method is able
to estimate the target shape accurately for any angle except
θ � 90◦.

VII. DISCUSSION

First, we clarify why three antennas are necessary for
the proposed method. If only two antennas #1 and #2 were
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Fig. 11. Locus of the center of curvature.
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Fig. 12. Locus of the estimated scattering center.

used, all the observed data would be either R1(t) or R2(t).
In general, the locations of the scattering centers for these
antennas are different, as illustrated in Fig. 3. However, when
a point-like target is assumed, the location can be uniquely
determined with R1(t) and R2(t) and the antenna interval
X0 using a triangulation technique. In other words, these two
cases cannot be distinguished if only two antennas are used.
Therefore, the use of three antennas is a necessary condition
for imaging a target with arbitrary motion. In this paper,
we showed that our proposed method can estimate arbitrary
motion with three antennas. This implies that the use of three
antennas is a sufficient condition for this problem.

Next, we discuss the reason why the averaging of two radii
is necessary. One might assume that the center of curvature or
the estimated scattering center could be used as an estimation
of target motion X(t). In fact, neither of these values can be
used for this estimation. Figures 11 and 12 show the loci of the
center of curvature c(t) and the scattering center estimated by
assuming a point-like target. The assumed model is the same as
in the previous section. Both the results show that such simple
methods cannot be used to estimate target motion, since these
methods are not able to separate the motion of the target from
the motion of a scattering center.

As for the distance X0 between antennas, note that X0 is
approximately equivalent to the baseline in an interferometry
technique, which means that a larger X0 gives a more accurate
estimation of angles. However, the proposed method assumes
that the three antenna elements are located close together,
because the curvature is approximately estimated under this
condition. After considering both of these factors, we have
empirically chosen X0 = 0.5m.

VIII. CONCLUSION

In this paper we have discussed an imaging method for
UWB (Ultra Wide-Band) pulse radar systems, particularly for
application in surveillance systems. The revised conventional
SEABED algorithm is a fast real-time UWB radar imaging
method that employs a pair of fixed antennas and is able
to estimate target shapes even for unknown target motion.
However, this method requires that the motion is parallel to the
antenna baseline, which is impractical in real environments.
To overcome this problem, we proposed a new UWB radar
imaging method. Although this method requires an additional
antenna, using three antennas in total, it provides an accurate
estimation of target motion and shapes for arbitrary motion
without any conditions. The performance of the proposed
method has thus far been verified only with numerical sim-
ulations. An experimental investigation of its performance is
an important future task.
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