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Abstract

UWB (Ultra Wide-Band) radar systems are used in a variety of applications. The UWB radar imaging algorithm
SEABED (Shape Estimation Algorithm based on BST and Extraction of Directly scattered waves) is a method
that can be used in real-time operation, although it requires high-resolution data. Although the resolution of
radar is basically restricted by its bandwidth, super-resolution techniques can be used to overcome the conven-
tional resolution limit. In this paper, we investigate super-resolution techniques for UWB radar experimental
data.

1 Introduction

UWB radar systems are used in a variety of applications including land-mine detection, driving assistance and
robotics. The fast UWB radar imaging algorithm SEABED [1], is, however, the only method that can be used
in applications demanding real-time operation, such as security surveillance systems. The SEABED algorithm
is based on a reversible transform IBST (Inverse Boundary Scattering Transform) between the target shape
and a time delay observed at multiple locations. Because the IBST is very sensitive to the resolution of the
time delay, it is imperative that high-resolution data be obtained to estimate various parts of the human-body.
Although the resolution of radar is basically restricted by its bandwidth, super-resolution techniques have been
applied to GPR (Ground Penetrating Radar) to enhance the conventional resolution limit [2]. In this paper,
we investigate experimentally super-resolution techniques for UWB radar data using a pig’s anterior abdominal
wall as a model of the human body. The results show that the super-resolution techniques are indeed capable
of improving the UWB radar performance.

2 SEABED Algorithm

We assume a mono-static radar system, in which an omni-directional antenna is scanned along a straight line.
UWB pulses are transmitted at fixed intervals and received by the antenna. The received data is converted
from analog to digital and stored in memory. We estimate target shapes using the obtained data. We define
a real space in which targets and the antenna are located. We express the 2-dimensional real space with the
parameters (x, y). Both x and y are normalized by λ, which is the center wavelength of the transmitted pulse in
air. We assume y > 0 for simplicity. The antenna is scanned along the x-axis in r-space. We define s(X,Y ) as
the received waveform after applying a matched filter at the antenna location (x, y) = (X, 0). Here, we define
Y with time t and the speed of the radiowave c as Y = ct/(2λ). We define a data space expressed by (X, Y ).

In previous work we developed a fast radar imaging algorithm, SEABED, based on a BST (Boundary
Scattering Transform) [3, 4, 5, 6]. The algorithm uses a reversible transform, BST, between target shapes and
pulse delays. The BST is expressed as

X = x + ydy/dx, (1)

Y = y

√
1 + (dy/dx)2, (2)



where (X, Y ) is a point on a quasi-wavefront, and (x, y) is a point on the target boundary [7]. The inverse
transform of the BST is given by

x = X − Y dY /dX, (3)

y = Y

√
1 − (dY /dX)2, (4)

where we assume |dY /dX| ≤ 1. This condition is required because y should be a real number. First, quasi-
wavefronts are extracted from the received signals s(X,Y ) in the SEABED algorithm. Quasi-wavefronts are
extracted to satisfy the conditions ds(X,Y )/dY = 0 and |dY/dX| ≤ 1. Finally, we apply the IBST to the quasi-
wavefronts, and obtain the final image. The extraction of quasi-wavefronts is critical to obtaining high-quality
images with this algorithm. However, the quasi-wavefronts cannot be accurately estimated if multiple echoes
are closely located in the received signal. Therefore, high-resolution techniques are indispensable to apply the
SEABED algorithm in actual environments.

3 Frequency-Domain High-Resolution Method

The MUSIC (MUltiple SIgnal Classification) algorithm [8] is often used as a high-resolution imaging method for
multiple signals based on the eigen-decomposition of correlation matrices. Suppose g(t) is a transmitted signal
and G(ω) is its Fourier transform, where ω is an angular frequency. Suppose f0(t) is a received signal and F0(ω)
is its Fourier transform. To retrieve the propagation transfer function, we apply the inverse filter to F0(ω) as
F (ω) = F0(ω)/G(ω). Furthermore, suppose a vector x is defined as

x = [F (ω1), F (ω2), · · · , F (ωM)]T, (5)

where T denotes the transposition operator of a matrix. Let us introduce a correlation matrix Rxx = E[xxH],
where E is the expectation operator, and H denotes the Hermite operator. Suppose Rxx has eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λM and corresponding eigenvectors e1, e2, · · · , eM . Suppose λn � 0 for n ≥ L + 1, then the
space spanned by en for n ≥ L + 1 is called a noise subspace. The MUSIC algorithm uses the characteristic
that the transfer function (or Green’s function) xtrue for the actual delay is orthogonal to the noise subspace as
xH

trueλn = 0 for n ≥ L + 1. Hence, a high-resolution signal fMUSIC(t) can be obtained as

fMUSIC(t) =
x0(t)Hx0(t)∑M

n=L+1 |x0(t)Hλn|
, (6)

where x0(t) is the transfer function assuming an echo with a time delay t.
The actual parameter settings for the MUSIC algorithm for our UWB radar experiment are described below.

The MUSIC algorithm is applied in the frequency domain to enhance the resolution for the UWB radar signals
as in [2]. First, we select 2M −1 frequency-domain data samples with S/N (signal-to-noise ratio) larger than -20
dB, where the maximum power density is 0dB, and M = 70 is empirically chosen. Next, a frequency smoothing
technique is applied to resolve correlated interferences, where M ×M covariance matrices are averaged M times.
Then, an eigenvalue decomposition is applied and a MUSIC spectrum is produced for each antenna location
assuming a 2-dimensional signal subspace.

4 Experimental Investigation

Figure 1 shows the experimental UWB radar site in an anechoic chamber. The system includes a short pulse
generator, a pair of omni-directional wideband planar patch antennas, and a wideband oscilloscope. The trans-
mitted pulse, with a crassical range resolution of about 50 mm, has a center frequency of 3.7 GHz and bandwidth
of 3.0 GHz. In this figure, a 20-mm thick mortar board is set as a target. The distance between the antenna
pair and the mortar board is set to 118 mm.

The pulse is transmitted, received by the oscilloscope, converted from analog to digital, and stored in memory.
After subtracting the direct wave from the transmitted antenna to the receiving antenna, we obtain the echoes
caused by the upper and lower boundaries of the mortar board shown in Fig. 2.



Figure 1: Experimental site for UWB radar with a mor-
tar board.

 0  2  4  6  8  10  12  14
Time/T0

Transmit Signal

Receive Signal

Figure 2: Transmitted and received signals with a mor-
tar board.
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Figure 3: High-resolution signal with Wiener filters with
various parameters.
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Figure 4: Signals processed by MUSIC algorithm,
Wiener filter, and matched filter.

A conventional Wiener filter technique is applied to this signal to enhance the resolution

FW(ω) = F0(ω)G∗(ω)/{η + (1 − η)|G(ω)|2}, (7)

where 0 ≤ η ≤ 1 is a parameter that depends on the S/N of the signal. Note that the optimal parameter
η cannot be determined here because multiple echoes contained in the signal f(t) have different S/N values.
Figure 3 shows the output of the Wiener filter for various η applied to the experimental signal from the mortar
board, where η = 0 and η = 1 correspond to the lower and upper signals, respectively. Although two echoes are
seen in this figure, other undesired components are observed as well. Figure 4 shows the signals processed by
the MUSIC algorithm, the Wiener filter and the matched filter. Here, an appropriate η = 0.3 for the Wiener
filter is chosen based on the signals in Fig. 3. The output of the matched filter, which has the lowest resolution,
cannot resolve the two echoes, whereas the other techniques can resolve them. The resolution of the MUSIC
algorithm is much higher than the Wiener filter. Here, the actual number of targets L = 2 is given to the
MUSIC algorithm. We also set L = 3 and 4 to see the output signal and confirm that the image is still clear
with a high resolution property, which means that the setting of L does not have much effect on the results.

The relative permittivity of the mortar board is estimated as 4.8 by another measurement. Thus, the
equivalent thickness of the board in the UWB radar experiment is calculated as

√
4.8 × 2 × 20mm = 87.6mm.

The equivalent thickness estimated from the MUSIC spectrum in Fig. 4 is 82.1 mm which has an error of 5.5
mm or 6.3% of the actual thickness.

Figure 5 shows an experimental setup with part of pig’s body as a target. As seen in the figure, the pair of
antennas is positioned above the pig’s anterior abdominal wall. The two antennas are scanned in a straight line
and the received signal is recorded every 5 mm. The pig’s anterior abdominal wall is used here as a realistic
model of a human body, which is an important study for an attractive application to surveillance and security
systems. Figure 6 shows the image obtained by a conventional matched filter. We do not see the detail of the



Figure 5: Experimental site for UWB radar with an
anterior abdominal wall.
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Figure 6: Image of the surface of an abdominal wall with
the matched filter.
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Figure 7: Super-resolution image of the surface of an abdominal wall.

surface fluctuation of the target due to its low resolution property. Figure 7 shows the image estimated with
the MUSIC algorithm, in which a clear target boundary is visible with a high resolution of about 10 mm. This
is 5 times higher than the classical resolution of 50 mm. This super-resolution technique can be employed in
conjunction with the SEABED algorithm to obtain a detailed structure of the human body.

5 Conclusion

In this paper, we investigated experimentally super-resolution techniques for UWB radar data using a mortar
board and a pig’s anterior abdominal wall as a model of the human body. The results showed that the super-
resolution techniques work well to improve the UWB radar performance. The results indicate that it is possible
to obtain a high-resolution image within a short time by using a super-resolution technique together with the
SEABED algorithm. The investigation of low-computational, high-resolution techniques should be an important
future study.
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