
Time-Reversal UWB Imaging with a Single
Antenna in Multi-Path Environments

Takuya Sakamoto 1, Toru Sato 2

Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

1t-sakamo@i.kyoto-u.ac.jp
2tsato@kuee.kyoto-u.ac.jp

Abstract— Electromagnetic inverse scattering with TR (Time-
Reversal) imaging has been studied with great interest in a variety
of applications. In this study, we propose a UWB radar system
with a single antenna that utilizes multi-path scattering. The
proposed imaging method is an extension of the conventional
DORT method, and uses a frequency-frequency matrix that is
suitable for a system with a single antenna. The performance of
the proposed method is investigated by means of a numerical
simulation and an experiment.

I. INTRODUCTION

Electromagnetic inverse scattering with TR (Time-Reversal)
imaging has been studied with great interest in a variety of ap-
plications. Most of the studies involving TR inverse scattering
assume that multiple signals are observed at several antenna
locations, which naturally implies costly array antennas. In
this study, we propose a simple UWB radar system with a
single antenna that utilizes multi-path scattering. The proposed
imaging method is an extension of the DORT (French acronym
for decomposition of the time reversal operator) method,
which was developed for systems with array antennas, and
is based on a SVD (Singular Value Decomposition) of a
matrix. A variety of matrices can be used, such as a space-
space matrix[1] or a space-frequency matrix [2]. The method
proposed in this study uses a frequency-frequency matrix that
is suitable for a system with a single antenna. Some research
groups have studied multiple scattering between point-like
targets[3], [4], [5], but they have assumed array antennas,
which are not applicable to our system. The performance of
the proposed method is investigated by means of a numerical
simulation and an experiment.

II. SYSTEM MODEL

Fig. 1 shows a model of the system proposed in this study.
The problem is imaging on a 2-dimensional plane. Distances
are normalized by the center wavelength λ of a transmitted
pulse, while propagation is calculated with a Green’s function
in the imaging process. The Green’s function for the numerical
simulation is expressed as

G(ω, r, r′) = − j
4
H0

(ω

c
|r − r′|

)
, (1)

where H0 is a Hankel function of the first kind, and r and r′

are the positions of the ends of a propagation path. Scattering
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Fig. 1. System model of a multi-path scattering UWB radar.

by a point target is modeled with the Born approximation as

S(ω) =
∫

ω2σ(r′)G2(ω, r, r′)dr′, (2)

where σ(r′) is the relative permittivity at position r′. This
system is composed of a transmit antenna Tx, a receiving
antenna Rx, a plate W made of a PEC (Perfectly Electric
Conductor), and a point-like PEC target P. The transmitted
pulse is a UWB pulse sT(t), which is a mono-cycle pulse for
the numerical simulation. We assume that the relative locations
of the antennas and the plate are known. The direct wave
sD(t) from Tx to Rx without scattering, and the reflected
wave sW(t) from plate W are measured and stored in memory
prior to the actual measurement of the targets. Waveforms
sD(t) and sW(t) are subtracted from a received signal s0(t)
as s(t) = s0(t)−sD(t)−sW(t). We assume that s(t) contains
4 waves, namely

• s1(t) Tx-P-Rx,
• s′2(t) Tx-P-W-Rx,
• s′′2 (t) Tx-W-P-Rx, and
• s3(t) Tx-W-P-W-Rx,

where s′2(t) and s′′2 (t) correspond to a pair of paths with op-
posite directions. Therefore, these echoes cannot be separated
if the system satisfies the condition of the Lorentz reciprocal
theorem. Hereafter, only 3 paths are considered, by introducing
s2(t) = s′2(t) + s′′2 (t). Additionally, note that this model
neglects higher-order multiple scattering components.



III. CONVENTIONAL TIME-REVERSAL IMAGING AND

DORT

TR imaging makes uses of the Lorentz reciprocal theorem,
and is characterized by its simple signal processing. The
principle of TR is described below. Let s(t) be the received
signal at Rx when a pulse is transmitted from Tx at t = 0.
Assume that s(−t) is transmitted from Rx, then a strong signal
is received at Tx at t = 0.

Next, we introduce G(ω, r, r′), the Green’s function of
propagation in the assumed medium, which includes the effect
of multi-path scattering. Then S(ω), the Fourier transform of
the received signal s(t), is expressed using ST(ω), the Fourier
transform of a transmitted signal sT(t), as

S(ω) = ω2G2(ω, r, r′)ST(ω), (3)

disregarding constant terms, and where the positions of both
Tx and Rx are r and the position of the point target is r′. Here,
we assume Rayleigh scattering with a tiny scatterer. Note that
the time reversal operator is equivalent to a complex conjugate
operation. Therefore, the image from TR method ITR(x) is
obtained as

ITR(x) =
∫

S∗ST(ω)(ω)G2(ω, r, x)dω, (4)

=
∫

ω2 |ST(ω)|2 G∗2(ω, r, r′)G2(ω, r, x)dω.(5)

The value of ITR(x) in Eq. (5) is at its maximum when x = r′

because the integrand is a real function. As mentioned above,
this classical TR method is based on matched filter theory.

DORT is an extension of TR imaging that introduces SVD
to improve the resolution. With a space-space matrix KSS,
DORT assumes that a sinusoidal wave is transmitted, and there
are multiple transmitting and receiving antennas. Element ki,j

of KSS is defined as the received complex signal between the
i-th transmitting antenna and the j-th receiving antenna. Here,
ki,j is expressed as

ki,j =
K∑

l=1

σlgi,lgl,j , (6)

where gi,l is the Green’s function between the i-th antenna
and the l-th target, and σl is in proportion to the scattering
intersection of the l-th target. The three terms in Eq. (6) can
be divided into three elements of matrices as

KSS = UΣV H, (7)

where U and V are composed of gi,l and gl,j , respectively.
Here, Σ is a diagonal matrix consisting of with sigmal . The
Green’s function for each propagation path is divided into
two matrices U and V , thus enabling an imaging just like
the classical MUSIC method because we can derive a noise
subspace by checking the elements of Σ. This procedure is
illustrated in Fig. 2. Although this method works well in the
assumed model with a sinusoidal wave and multiple antennas,
it cannot be applied to our system without an appropriate
extension.
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Fig. 2. Singular value decomposition of a space-space matrix in the
conventional DORT.

IV. PROPOSED COARSE-FINE-FREQUENCIES DORT

S1, · · · , SN is defined as the value of the received signal
S(ω) in the frequency domain at ω1, · · · , ωN . The matrix KFF

is defined as

KFF =

⎡
⎢⎢⎢⎣

S1 S2 · · · SL

SL+1 SL+2 · · · S2L

...
...

...
...

SN−L+1 SN−L+2 · · · SN

⎤
⎥⎥⎥⎦ , (8)

where the rows and columns correspond to coarse and fine
changes in frequencies, respectively. We assume N = L2

for simplicity. For comparison with the conventional DORT,
Fig. 3 shows the SVD of the KFF. In the proposed method,
the Green’s function is expressed as

G(ω + Δω, r′, r) � − j
4

exp
(
jω+Δω

c |r − r′|)√
ω+Δω

c
|r − r′|

(9)

� − j
4

exp
(
jω

c |r − r′|)√
ω
c |r − r′| (10)

· exp
(

j
Δω

c
|r − r′|

)
, (11)

where ω and Δω are coarse and fine frequencies, respectively.
With this approximation, the Green’s function for each prop-
agation path can be divided into two parts, which forms the
basis of our proposed method.

First, the proposed DORT applies SVD to KFF as

KFF = UΣV H, (12)

where Σ is a diagonal matrix with singular values. The
left and right singular matrices correspond to coarse and
fine frequencies, respectively. As in the conventional DORT,
we adopt small L − PK singular values to estimate noise
subspaces, where P is the number of multipaths for each point-
like target, and K is the number of targets. In this paper we
assume P = 3 and K = 1. We select left and right singular
vectors, uPK+1 · · ·uN and vPK+1 · · ·vN , respectively, as the
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Fig. 3. Singular value decomposition of a space-space matrix in the proposed
DORT.

base vectors of the noise subspace and obtain the image from
the left singular vectors as

IL(x) =
1

L∑
i=PK+1

P∑
p=1

∣∣uH
i gp(x)

∣∣2 /
∣∣gp(x)

∣∣2
, (13)

where gp is the L-dimensional vector with values of the
Green’s function for the p-th path at ω1, ωL+1 · · · , ωN−L+1.
Similarly, the image IR(x) can be obtained from the right
singular vectors. We obtain the final image by multiplying
these as IDORT(x) = IL(x)IR(x).

V. PERFORMANCE EVALUATION OF IMAGING METHODS

Examples of applying the conventional and proposed meth-
ods are given in this section. As in shown in Fig. 1, the
PEC plate is on the x-axis, the antenna is on the y-axis,
and the target is at (2.0λ, 2.5λ). The propagation model is
approximated as a scalar wave with the Green’s function
described above, and we assume a noiseless case for the
numerical simulation. In the proposed method, we set L = 10
and N = 100 while L − PK = 7 small singular values are
selected from the 10× 10 matrix KFF, and the corresponding
7 left and right singular vectors are used for imaging.

The signal used in this numerical simulation is shown in
Fig. 4, where the solid line represents the transmitted pulse
and the dashed line the received echoes. There are three echoes
from three different paths in this figure. The time-reversal
image ITR is shown in Figs. 5 and 6, where cross symbols
denote the actual target positions. This image ITR has the
maximum value at the actual location, but there are many
undesired false peaks, that causes the poor image resolution.

The image from the left singular matrix IL(x) is shown
in Fig. 7. Although the actual target position is estimated
with a high resolution, there are other undesired peaks in
the figure. The image from the right singular matrix IR(x) is
shown in Fig. 8. Although there are no undesired false images,
the resolution is lower than that of IL(x). The proposed
method obtains the final image by multiplying these images
as IDORT(x) = IL(x)IR(x). The proposed DORT image
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Fig. 4. Received signal used in the numerical simulation.
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Fig. 5. Conventional time-reversal image with numerical data.

IDORT is shown in Figs. 9 and 10 and this image has a higher
resolution than the conventional one.

Next, we apply the imaging methods to experimental data.
Fig. 11 shows the experimental UWB radar site in an anechoic
chamber. The system includes a short pulse generator, a pair
of omni-directional wideband planar patch antennas, and a
wideband oscilloscope. The transmitted pulse has a center
frequency of 3.7GHz and bandwidth of 3.0GHz. A metallic
pole with a diameter of 5mm is used instead of the point-like
target assumed in the numerical simulation described above.
This pole is set parallel to the baseline of the pair of antennas.
The differences between this experiment and the numerical
simulation are

• the target used is not a point target in the strictest sense,
• a 3-dimensional Green’s function should be employed

instead of the 2-dimensional one,
• the bandwidth is limited by the antenna property, and
• different antennas are used for transmitting and receiving.

All these differences, except the first one regarding the size
of the target, are taken into account in the imaging signal
processing. Fig. 12 shows a transmitted and a received signal
in this experiment. After subtracting the direct wave from the
metallic plate W from the received signal, we obtain the echoes
caused by the multi-path scattering as shown in Fig. 13. The
three echoes are clearly observed in this figure, highlighted by
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Fig. 6. Conventional time-reversal 3-D image with numerical data.
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Fig. 7. DORT image with a coarse frequency noise subspace.

black triangles.

Figs. 14 and 15 show the images obtained from the con-
ventional time-reversal method and the proposed DORT, re-
spectively. Although the resolution is not as high as that in the
numerical simulation because of the effect of noise and timing
jitter, the proposed method clearly shows an improvement in
the resolution.

VI. CONCLUSION

A new method has been proposed for electromagnetic
inverse scattering with time-reversal imaging. This method
is applicable to a wide-band radar system with a single
antenna. The proposed method has been derived by introduc-
ing a frequency-frequency matrix to the conventional DORT,
allowing the method to be applied to measurement with
a single antenna, whereas the conventional DORT assumes
a system with multiple antennas or sinusoidal signals. The
performance of the proposed method has been investigated
with a numerical simulation and an experiment. Results of both
the numerical and experimental investigations show that the
proposed method has higher resolution than the conventional
time-reversal method.
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Fig. 8. DORT image with a fine frequency noise subspace.
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Fig. 9. Proposed DORT image with numerical data.
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Fig. 10. Proposed DORT 3-D image with numerical data.

Fig. 11. Experimental setup for UWB radar imaging.
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Fig. 12. Transmitted and received signals in the experiment.
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Fig. 13. Received echoes caused by multi-path scattering in the experiment.

-0.8
-0.4
 0
 0.4
 0.8

x [mm]

y 
[m

m
]

-50  0  50 100  200  300
 50

 100

 150

 200

 250

 300

 350

 400

 450

Fig. 14. Conventional time-reversal image with experimental data.
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Fig. 15. Proposed DORT image with experimental data.


