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Abstract

UWB radar is promising for near field measurements, such as non-contact measurement for reflec-
tor antennas. In our previous work, we developed stable imaging algorithm Envelope, that uses
envelopes of circles. For complex targets, however, the image with Envelope becomes unstable, be-
cause it requires connections of peaks of the observed data. This connection is sometimes difficult
due to multiple scatterings, that leads to non-negligible errors in imaging. This paper proposes
a new imaging algorithm that utilizes fuzzy estimation for direction of arrival (DOA). It achieves
direct boundary extractions with observed delays, and resolves the instability of the conventional
method.

1 Introduction

UWB pulse radar has a great potential for high-range resolution imaging for near field sensing,
such as target identification and self positioning for robots or vehicles. Although various kinds of
radar algorithms have been proposed, these all require intensive computation [1]. Contrarily, the
high-speed imaging algorithm, SEABED [2] achieves a direct and non-parametric imaging based on
a reversible transform BST between the time delay and target boundary. However, the estimated
image with SEABED is sensitive to random noises because BST utilizes the derivative of the
received data. To enhance the stability, we have proposed a robust, fast imaging algorithm known
as Envelope [3]. This method does not require derivative operations to create a stable image, but
instead uses an envelope of circles that are determined with antenna locations and observed ranges.
It accomplishes a stable imaging for simple boundary targets. However, for complex boundaries,
the obtained image with Envelope is still unstable, because it requires a connecting procedure for
the observed ranges for each antenna location. In general, a complex target has many scattering
points on its surface, and it is quite difficult to extract an appropriate wavefront due to the multiple
scatterings. In this paper, we propose a new imaging algorithm based on a direct mapping from
the estimated ranges to the target boundary without the wavefront connection. This algorithm
utilizes a fuzzy estimation for the angle of arrival with signal amplitudes, and realizes a stable
imaging even for complex target boundaries. Finally, the results from numerical simulations prove
that our proposed method has a clear advantage over the conventional algorithms.

2 System Model

The left hand side of Fig. 1 shows the system model. It assumes that the target has an arbi-
trary shape with a clear boundary, and that the propagation speed of the radio wave is a known
constant. An omni-directional antenna is scanned along the x-axis. We utilize a UWB pulse as
the transmitting current. R-space is defined as the real space where the target and antenna are
located, and is expressed by the parameter (x, z). These parameters are normalized by λ, which
is the center wavelength of the pulse. We assume z > 0 for simplicity. s(X, Z ′) is defined as the
output of the Wiener filter to the received electric field at the antenna location (x, z) = (X, 0),
where Z ′ = ct/(2λ) is expressed by the time t and the speed of the radio wave c. We connect
the significant peaks of s(X,Z ′) as Z, and call this surface (X, Z) a quasi wavefront. D-space is
defined as the space expressed by (X, Z). The transform from d-space to r-space corresponds to
the imaging dealt with in this paper.
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Figure 1: Target boundary in r-space (left) and quasi wavefront in d-space (right).
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Figure 2: Output of the Wiener filter and ex-
tracted quasi wavefront.
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Figure 3: Estimated image with the conventional
SEABED.

3 Conventional Algorithm

In our previous work, we proposed the high-speed imaging algorithm SEABED that utilizes a
reversible transform BST between the target boundary (x, z) and the quasi wavefront (X,Z) [2].
Inverse BST is expressed as x = X − Z∂Z/∂X, z = Z

√
1 − (∂Z/∂X)2. This transform gives us

a strict solution for the assumed inverse problem, and realizes a direct, non-parametric imaging.
However, it produces large errors in targets with complex boundaries. Fig. 2 shows the output of
the Wiener filter for the target boundary shown in Fig. 1. Fig. 3 shows the estimated image with
SEABED. This image from SEABED is unstable, because BST utilizes the derivative of the quasi
wavefront, and the fluctuation caused by multiple scattering can be enhanced with a derivative.
Thus, for a complex target boundary, it is difficult to estimate a derivative for each quasi wavefront
accurately.

To improve the stability of the estimated image, Envelope has been proposed as a stable and fast
imaging algorithm without derivative operations. This algorithm utilizes the principle that the
target boundary can be expressed as the envelope of circles, with a center point (X, 0), and radius
Z [3]. This principle introduces that these envelopes should circumscribe or inscribe to the target
boundary. This method approximates the target region (x, z) for each (X, Z) as

max
νX(X′−X)<0

xp(X
′
) ≤ x ≤ min

νX(X′−X)>0
xp(X

′
)

z =
√

Z2 − (x − X)2



 , (1)

where νX = sgn(∂x/∂X), and X
′
is a searching variable, and xp(X

′
) is defined as the intersection

point between the circles calculated with (X, Z) and (X ′, Z ′). Eq. (1) determines an arbitrary
target boundary without derivative operations. Thus, the instability caused by random noise is
suppressed. However, for a complex boundary, the image with Envelope is still unstable as shown in
Fig. 4. This is because Envelope requires an appropriate connection between the estimated range
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Figure 4: Estimated image with the conventional
Envelope.
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Figure 5: Angle of the arrival and convergence
orbit of the intersection points.

points for a stable imaging. Complex targets, in general, have many scattering points on their
surface, and each antenna observes many ranges. Thus, it is quite difficult to extract a correct
quasi wavefront because each point on (X, Z) has multiple connecting candidates around itself.
If this connection fails, the estimated image with Envelope includes non-negligible errors due to
using the incorrect envelope of circles. Although the imaging algorithms with data synthesis or the
Fourier transform do not require wavefront connections, we confirm that these all require intensive
calculation.

4 Proposed Algorithm

This section describes a new imaging algorithm for complex target boundaries that resolves the
previous problems. This algorithm is based on the simple principle that a target boundary point
should exist on the circle with center (X, 0) and radius Z. Thus, each target point (x, z) can be
calculated from the angle of the arrival. For a stable angular estimation, this method utilizes the
membership function f(θ,Xi, Zi) as,

f(θ, Xi, Zi) = e
−{θ − θ(Xi, Zi)}2

2σθ2 , (2)

where θ(Xi, Zi) is defined as the angle of the intersection point between the circles with (X,Z)
and (Xi, Zi). Fig. 5 shows the relationship between the intersection point and θ(Xi, Zi). Here,
we utilize the principle that when (Xi, Zi) moves along an appropriate quasi wavefront, θ(Xi, Zi)
converges to the true angle of arrival. The convergence orbit for the intersection points is shown in
Fig. 5. This method calculates the optimum angle for each (X,Z) with signal amplitude s(Xi, Zi)
as,

θopt = arg max
θ

{∑

i

s(Xi, Zi)f(θ,Xi, Zi) e
− (X−Xi)

2

2σ2
X

}
, (3)

where σθ and σX are constants, that are empirically determined. The weight s(Xi, Zi) in Eq. (3)
improves the noise tolerance. This method realizes the direct transform from the points of (X, Z) to
the points of (x, z) without a wavefront connection. Thus, the instability caused by inappropriate
connections can be suppressed with this method. For the target with a large curvature, such as
point, each s(Xi, Zi) is smaller, however,

∑
i f(θ, Xi, Zi) becomes larger because the intersection

points converge into a small region. This algorithm can therefore obtain a stable image for complex
target that have many boundaries with large curvatures.

The procedure for the proposed method is presented as follows.
Step 1). Extract quasi wavefront (X, Z), that satisfies ∂s(X,Z ′)/∂Z ′ = 0, s(X, Z ′) ≥ α maxZ′ s(X, Z ′).
Parameter α is determined empirically.
Step 2). For each (X, Z), calculate f(θ,Xi, Zi) with other points (Xi, Zi) and determine θopt in
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Figure 6: Estimated image with the proposed
method.
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Figure 7: Example of the evaluation value in
Eq. (3) at (X,Z) = (−0.01, 2.025).

Eq. (3).
Step 3). Calculate each target point (x, z) as x = X + Z cos θopt, z = Z sin θopt

The proposed method achieves a direct mapping from the quasi wavefront (X,Z) to the target
boundary (x, z) using this simple procedure.

5 Simulation Results and Conclusions

Fig. 6 shows the estimated image with the proposed method for the data in Fig. 2. A noiseless
situation is assumed. σX = 1.0λ and σθ = π/50 are set. This result verifies that the proposed
method enhances the stability of the estimated image significantly, even for a complex target
boundary. Fig. 7 shows the example of the evaluation value in Eq. (3) at (X,Z) = (−0.01, 2.025).
We can recognize a maximum peak around the true angle, even for the situation that there are
many connecting candidates around (X,Z). This is because it achieves a direct mapping from
the quasi wavefront to the target boundary with the fuzzy function and signal amplitudes. Thus,
it can suppress the errors for inappropriate connections. We confirm that the proposed method
obtains a stable and correct target image for S/N ≥ 20 dB. The result also proves that the
calculation time of the proposed method is within 0.2 sec with a Xeon 2.8 GHz, which is sufficient
for real-time operation. We also confirm that this algorithm achieves a stable imaging, where
multiple boundaries with large or small curvatures are intermingled, such as in plate and point
targets. However, it is difficult for this method to achieve a stable imaging for more complex target
boundaries, where multiple echoes cannot be resolved due to bandwidth limitations. Consequently,
our future research is aimed at enhancing the application range of this method.
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