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Abstract— UWB (Ultra Wide-Band) radar has a variety of applications including security
surveillance systems. The SEABED algorithm is a fast imaging method for UWB radar, that
uses a reversible transform between the real and data spaces [1]. We introduce an intermediate
space between the real and data spaces [2]. Curves in the intermediate space can be smooth,
and can be used to extract quasi-wavefronts (the equi-phase surface). In this paper, we use LMS
(Least-Mean-Square) filters in the intermediate space for imaging arbitrary target shapes.

1. INTRODUCTION

UWB (ultra-wideband) pulse radar is a promising candidate as an environment measurement, or
sensing, method for robots. Radar imaging for a nearby target is known as an ill-posed inverse
problem: a problem that has been extensively studied [3, 4]. However, conventional algorithms
require long computational time, that makes it difficult to apply UWB to real-time operations
for robots. We have proposed a fast radar imaging algorithm, the SEABED algorithm, for UWB
pulse radar [5, 6]. This algorithm is based on a reversible transform, IBST (Inverse Boundary
Scattering Transform), between the target shape and observed data. This transform enables us to
estimate target shapes quickly and accurately in a noiseless environment. The SEABED algorithm
extracts equi-phase surfaces (also called quasi-wavefronts) first, and then applies an IBST to obtain
the estimated image. However, in a noisy environment the image estimated by the SEABED
algorithm is degraded because the quasiwavefronts cannot be accurately estimated. In this paper,
we introduce an FIBST (Fractional IBST) [2] to the quasi-wavefront extraction process. This
transform is obtained by expanding the conventional IBST, which enables us to deal with the
intermediate space between real and data spaces, and propose a stable quasi-wavefronts extraction
algorithm . We show some application examples with numerical simulations.

2. SYSTEM MODEL

We assume a mono-static radar system. An omni-directional antenna is scanned along a straight
line. UWB pulses are transmitted at fixed intervals and received by the antenna. The received
data is A/D converted and stored in memory. We estimate target shapes using the obtained data.
We deal with a 2-dimensional problem. We define a real space in which targets and antenna are
located. We express the real space with the parameters (x, y). Both x and y are normalized by λ,
which is the center wavelength of the transmitted pulse in air. We assume y > 0 for simplicity. The
antenna is scanned along the x-axis in r-space. We define s(X, Y ) as the received waveform after
applying a matched filter at the antenna-location (x, y) = (X, 0). Here, we define Y with time t
and the speed of the radiowave c as Y = ct/(2λ). We define a data space expressed by (X, Y ).

3. SEABED ALGORITHM

In previous work we developed a fast radar imaging algorithm, ‘SEABED’, based on a BST (Bound-
ary Scattering Transform) [5–8]. The algorithm uses a reversible transform, BST, between target
shapes and pulse delays. The BST is expressed as

X = x + y
dy

dx
, (1)

Y = y

√
1 +

(
dy

dx

)2

, (2)

where (X, Y ) is a point on a quasi wavefront, and (x, y) is a point on the target boundary [1]. We
have clarified that the inverse transform of the BST is given by

x = X − Y dY/dX, (3)

y = Y
√

1 − (dY/dX)2, (4)
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where we assume |dY/dX| ≤ 1. This condition is required because y should be a real number.
First, quasi wavefronts are extracted from the received signals s(X, Y ) in the SEABED algorithm.
Quasi wavefronts are extracted to satisfy the conditions ds(X, Y )/dY = 0 and |dY/dX| ≤ 1.
Finally, we apply the IBST to the quasi wavefronts, and obtain the final image. The extraction
of quasi-wavefronts is critical to obtaining high-quality images with this algorithm. However, the
quasi-wavefront cannot be accurately estimated for a noisy case. It is to solve this is the problem
that we propose a new algorithm in this study.

4. FRACTIONAL BOUNDARY SCATTERING TRANSFORM

Here, we explain a fractional boundary scattering transform obtained by expanding the conven-
tional boundary scattering transform [2]. We define the fractional boundary scattering transform,
FBST (α) as

x(α) = x + αy
dy

dx
, (5)

y(α) = y

√
1 + α

(
dy

dx

)2

. (6)

These equations contain a parameter α (0 ≤ α ≤ 1), which is not included in the conventional
boundary scattering transform. We call (x(α), y(α)) a ‘fractional transform quasi wavefront’. We
call the space expressed by (x(α), y(α)) a ‘fractional transform space’. The fractional transform
quasi-wavefront is equivalent to the conventional quasi-wavefront for α = 1 and the fractional
transform quasi-wavefront is equivalent to the target shape for α = 0. The fractional inverse
boundary scattering transform, FIBST (α) is defined in relation to the FBST similarly to the
relationship between BST and IBST; by changing the sign of α.

Our study [2] clarified that data in the fractional transform space can be smooth regardless
of the shape of targets. This characteristic can be used in the extraction of quasi-wavefronts.
Additionally, data in any space can be transformed to arbitrary space as in Fig. 1, a fact that can
be effectively used to develop our new algorithm. An example of data in 3 spaces (real, data, and
fractional transform) is shown in Fig. 2. The data has an edge around X = 1.5, but the data in
the fractional transform space is smooth, where we set α = 0.5. In this way, we can avoid edges
in the real and data space by applying an FBST to transform the data to the fractional transform
space.

Real Space Data Space 
BST=FBST(1)

IBST=FBST(-1)

Fractional Transform Space (α)

FBST(α)FBST(−α) FBST(α−1) FBST(1−α)

Figure 1: Relationships between spaces.
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Figure 2: An example of data in real, data, and fractional trans-
form spaces.

5. FRACTIONAL BOUNDARY SCATTERING TRANSFORM

A new extraction method for quasi-wavefronts is proposed here. 100 undesired interference points
are assumed with the true quasi-wavefront points for each antenna position X. The first 10 true
points are assumed and used as the initial value. We apply the FBST to the estimated quasi-
wavefront to obtain the curve in the intermediate space, and apply a 5th-order LMS filter to
estimate the entire curve. Then we apply the inverse FBST and obtain the predicted points. We
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adopt the nearest point to the prediction as the estimation in the next step. This procedure is
repeated. This process is shown in Fig. 3 and contrasted with the conventional method as used in
the original SEABED algorithm [1].

Proposed MethodConventional Method

Part of Fractional Space

Part of Data Space
(X1,Y1), (X2,Y2),...,(Xn,Yn)

Extrapolation with 
LMS filter (Xn+1,Yn+1),...

Part of Data Space
(X1,Y1), (X2,Y2),...,(Xn,Yn)

Extrapolation with 
LMS filter (xn+1, yn+1),...

FIBST( )

(x1, x1), (x2, y2),...,(xn, yn)
(   )

FBST( α)

Extrapolation with 
LMS filter (Xn+1,Yn+1),...

α(   )α(  )α (   )α (  )α (  )α
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Figure 3: Procedures of the proposed and conventional quasi-wavefront extraction methods.

Figure 4 shows an example of the application of the proposed algorithm to the data shown in
Fig. 2. The estimation of the quasi-wavefront until the 1st step in Fig. 4 is quite easy because of the
smoothness in the data that means it does not depend on the method used. However, there is an
edge around X = 1.5 in the data space. Simple LMS filtering fails to track the true quasi-wavefront
here. The proposed algorithm applies FIBST to the data to obtain the fractional transform space
data as black squares in step 2. Next, LMS filter prediction is applied to extrapolate the fractional
transform space data in step 3. Finally, the FBST is applied to obtain the estimated quasi-wavefront
in step 4. We adopt the nearest point to the prediction as the estimation in the next step. We
repeat these procedures until the final point is estimated.
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Figure 4: Application example of the proposed algorithm.

Figure 5 shows a comparison between the proposed method and the conventional method that
applies the LMS filter in the data space rather than the intermediate space. The results show that
the proposed method works while the conventional method produces a poor estimation. Fig. 6 shows
the estimated image with the conventional method and the proposed method. For the conventional
method, the shape for x > 1.5 is not estimated while our proposed method can correctly estimate
the entire target shape.



Progress In Electromagnetics Research Symposium, Hangzhou, China, March 24–28, 2008 1031

 0

 0.5

 1

 1.5

 2

 2.5

-4 -3 -2 -1  0  1  2  3  4

Y

X

 0

 0.5

 1

 1.5

 2

 2.5

-4 -3 -2 -1  0  1  2  3  4

Y

X

Figure 5: Quasi-wavefronts estimated with the conventional methods (left) and proposed methods (right).
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Figure 6: Images estimated with the conventional methods (left) and the proposed methods (right).

6. CONCLUSION

In this paper, we introduced a FIBST (Fractional IBST) to the quasi-wavefront extraction process,
for the SEABED algorithm for UWB pulse radar imaging. This enables us to deal with the
intermediate space between real and data spaces, and propose a stable quasi-wavefront extraction
algorithm. The results of experimental application show that the proposed method maintains
tracking data even in noisy environments. Additionally, the proposed method can estimate the
entire target image while the conventional one cannot as it fails when multiple undesired points are
caused by noise and interference.
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