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ABSTRACT

Orbit estimation of space debris, which is unneces-
sary objects orbiting around the earth, is an impor-
tant task in avoiding the collision with spacecrafts.
Kamisaibara Space Guard Center radar system was
built in 2004 as the first radar facility devoted to
the observation of space debris in Japan. In order
to detect smaller debris, it is effective to improve
SNR (Signal-to-Noise Ratio) using coherent integra-
tion. However it is difficult to apply the coherent
integration to the real data because the motion of
the target is unknown at the first step. We propose
fast algorithms for signal detection and orbit estima-
tion for faint radar echoes from space debris by uti-
lizing the characteristic of the evaluation function.
The proposed algorithms improve SNR by 10.62 dB.
The error of the range and the Doppler velocity with
expected one are 89 m and 21 m/s, respectively.
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mation, detection sensitivity, KSGC.

1. INTRODUCTION

Space debris, or fragments of satellites and rocket
bodies orbiting around the earth, cause a space en-
vironment problem. More than 2,000 t of artificial
objects are in the earth’s orbit, and 95 % of them are
not functioning. The average velocity of space debris
is about 8 km/sec, and it reaches about 10 km/sec
in a collision. As the kinetic energy is proportional
to the square of velocity, the collision energy is enor-
mous, and thus even tiny debris may cause serious
damage to spacecraft.

The number of space debris whose diameter is larger
than 1 mm is more than 3.5 million[1][2]. There is the
possibility that space debris could collide with oper-
ational space craft. For these reasons, it is indispens-
able to obtain precise orbital information by observ-

ing space debris for avoiding accidents. In United
States, space debris of about 10 cm size have been
observed and cataloged by the existing network of
radars and optical sensors around the world by the
US SPACECOM[3].

Kamisaibara Space Guard Center (KSGC) radar sys-
tem was built by the Japan Space Forum as the
first radar facility devoted to space debris observa-
tion in Japan, and started operation in 2004. Tab. 1
shows main parameters of the KSGC. The KSGC
radar is equipped with an active phased array an-
tenna mounted on a rotationary base. It is thus pos-
sible to track unknown targets for the full angular
region above 15 degree elevation. The orbit can be
determined by a single observation pass.

Considering the danger of the collision with space de-
bris, the size region of space debris which we need to
observe is more than 1 cm, because it is possible to
protect space craft against small debris of less than
1 cm. Currently the KSGC radar system can observe
1 m2 size of space debris for range 600 km. In the
future, we need to improve the detection sensitiv-
ity to observe and catalog 1 cm size of space debris.
Here we propose a fast algorithm of signal detection
and orbit estimation for the faint echoes from space
debris.

2. CONVENTIONAL ESTIMATION
METHOD USING A SINGLE PULSE

The liner-chirp pulse compression is used for the
KSGC radar system to enhance the range resolution
and detect distant targets. We define the transmit-
ted signal as s(t), and the received signal after syn-
chronous detection as r(t). They are expressed as

s(t) = A(t) exp(−j2π
B

2T
t2), (1)

r(t) = s(t − td) exp [−j2π{fd(t − td) − fctd}] , (2)



Table 1. Main Parameters of the KSGC Radar

Parameters Value
Location Kamisaibara,

Okayama, Japan
(35.31◦N, 133.94◦E)

Radar System Active Phased Array
Antenna Size 2.8 m × 2.8 m
Number of Elements 1,395
Gain 38.4 dB
Peak Output 96 kW (69 W × 1,395)
Polarization Vertical
Center Frequency 3,265 MHz
Beam Width 1.9◦
Range Resolution 225 m
Band Width 800 MHz
Pulse Length 200 or 300 µsec

where A(t), T , B, td, fd, fc are the window func-
tion, the pulse length, the frequency bandwidth, the
delay time, the Doppler frequency and the center fre-
quency, respectively. We apply to the matched filter
whose impulse response is expressed as

h′(t) = s∗(−t), (3)

and obtain the delay time. At this point, the pulse
compression ratio P is expressed by P = BT . The
range resolution is improved 1/P times, and the peak
output power is enhanced by factor of P [4].

However, the delay time includes an error when the
Doppler frequency has an offset. Fig. 1 shows a
model of liner-chirp pulse compression. The black
line s(t) and r(t) are the transmitted and received
signals, respectively. We convolute r(t) with the
matched filter without the effect of the Doppler shift
h′(t) and obtain the delay time including the error
tl, which is expressed as tl = fdT/B. We need to
consider the Doppler shift in the matched filter as
expressed by h(t) = h′(t)e−jωdt. This means that
there is an ambiguity between the delay time and
the frequency.

When fd is true we can obtain the true delay time
and the response of the filter is maximum. In a con-
ventional method, we search the Doppler frequency
which maximizes the response of the matched filter
as

max
fd,t

∣∣∣∣∫ s(τ)h(t − τ)dτ

∣∣∣∣2 . (4)

Fig. 2 shows an example of the conventional method
applied to the real data of the KSGC radar. The
left and right figures are echoes from ISS (Inter-
national Space Station) and H2A-Rocket Booster
(H2A-R/B), respectively. Their RCS (Radar Cross
Section) are about 388.64 m2 and 27.1 m2, respec-
tively. Fig. 2 shows that it is difficult to detect a
signal in low SNR condition using the conventional
method.
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Figure 1. Liner-chirp Pulse Compression.
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Figure 2. Example of Conventional Method Applied
to the Real Data.

3. EVALUATION FUNCTION WITH A
COHERENT INTEGRATION

In order to improve SNR, we try to integrate received
signals coherently. However, coherent integration is
difficult in the space debris observation because the
range, the Doppler velocity and the direction of the
movement of debris are unknown. Therefore, we
need to assume a motion model.

The instantaneous orbit of space debris is an ellipse
with one of its focus at the center of the gravity of the
earth. However, it can be approximated as uniform
motion for a duration of few seconds as the result of
our examination. We approximate the orbit of space
debris as a straight line in the vicinity of the radar,
and take the coordinate plane to include the orbit
and the radar antenna.

Fig. 3 shows the system model. We can express
the orbit with 3 parameters (r1, vd, φ) = x, and the
range of debris is expressed as

rd(t) =

√
r2
1 − 2r1vdt +

(
vd

cos φ

)2

t2, (5)

where r1, vd, and φ are the range, the Doppler veloc-
ity, and the angle between the direction of the motion
and that of the line-of-sight of the first echo, respec-
tively. We treat the orbit estimation process as an
optimization problem. We integrate received signals
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Figure 3. System Model.

coherently according to Eq. 5 and search the opti-
mum orbit parameters which maximize the output
as

max
x

∣∣∣∣∣
N∑

i=1

∫
si(τ)hi(ti − τ)dτ · e−j(ωiti−θi)

∣∣∣∣∣
2

, (6)

where si(t) is the signal for i-th pulse, hi(t) is the im-
pulse response with a Doppler shift, N is the number
of integration, and ti, ωi, θi(i = 1, ···, N) are uniquely
determined by x. The parameters ti, ωi, and θi are
the delay time revision, the frequency revision and
the phase revision between adjacent pulses, respec-
tively.

The transmitted signal is a liner-chirp signal. Fig. 4
shows a part of the evaluation function for the true
φ, where x=(800 km, 4 km/s, 60◦), N = 4, IPP
(Inter Pulse Period) of 7,500 µsec, and pulse length
T = 300 µsec. There are two noticeable points in this
evaluation function. First, we can see the correlation
between r1 and vd. As we explained in Sec. 2, it is
the ambiguity caused by the liner-chirp pulse com-
pression and its gradient is a = B/fcT . Secondary,
we see the periodical peaks in the direction of vd.
We define this period as vd0. This is because even
if the phase rotates between adjacent pulses by the
integral multiples of the wavenumber, we can inte-
grate received signals coherently. Therefore, many
suboptimal solutions are generated and this period
is expressed as

vd0 ≅ λ/2TIPP, (7)

where λ and TIPP are wavelength and IPP, respec-
tively. As λ = 9.18 cm and the region of TIPP is
5–10 msec in case of KSGC, we need to search for
vd in the accuracy of mm/s, which is not realistic.
Therefore an effective searching method is required.
Here we divide the method to optimize this evalu-
ation function into two stages; the signal detection
and the orbit estimation.

4. FAST SIGNAL DETECTION ALGO-
RITHM

Here, we propose the signal detection method. Its
purpose of the algorithm is to detect desired echo

Figure 4. Evaluation Function.
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Figure 5. Model of the Detection Method.

from the target even if orbital parameters cannot
be estimated. It means that we need the algorithm
which can efficiently search for any suboptimal solu-
tions.

We found out that the effect of vd is predominant
in θi as the result of our examination of this eval-
uation function. It shows that tuning vd can revise
all phase shifts of pulses which are used by coherent
integration. We employ two approaches: First, we
use the correlation between r1 and vd. Fig. 5 shows
the model of the proposed detection method. We de-
fine the orthogonal axis and the parallel axis to the
direction of the correlation as the u axis and the w
axis, respectively, as shown in Fig. 5. The axis of
the correlation can be found by searching along the
u axis.

Secondary, we introduce δvd which tunes all phase
shifts of pulses. As we explained in Sec. 3, θi is
uniquely determined by the orbital parameters x.
According to Eq. 7, we divide the Doppler velocity
in θi into nvd0 and δvd. They are expressed as

vd = nvd0 + δvd, (8)

where n is an integer and |δvd| ≤ vd0/2. We de-
fine nvd0 and δvd as the global Doppler velocity
and the local Doppler velocity, respectively. The
global Doppler velocity determines the orbit of de-
bris and influences the response of the filter. The lo-
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Figure 6. nvd0 vs. δvd.

cal Doppler velocity δvd determines all phase shifts
between adjacent pulses. Fig. 6 shows nvd0 vs. δvd

in a section of r1. The evaluation function becomes
a smooth and continuous surface by dividing the
Doppler velocity, which is one dimension originally,
into two dimensions.

In Fig. 5, all parameters are updated when we update
u for one step. We search δvd for a period, fixing
another parameters instead of simply searching vd.
Therefore, one of the suboptimal solutions can be
found by searching along the u axis and the δvd axis.

The signal detection algorithm is described as fol-
lows:

1. Update u for one step.

2. Update δvd. If |δvd| < vd0/2 take a step towards
3. Otherwise take a step towards 1.

3. If the threshold < the output, take a step to-
wards 4. Otherwise take a step towards 2.

4. Optimize parameters.

We define the time to calculate an evaluation value
as k. The calculation time to search in the vd axis for
i point is ki. It becomes almost 0 by using the pro-
posed method, since the searching in the vd section
can be treated as a simple phase rotation. There-
fore, the improvement factor of the calculation time
is i. We define the Doppler velocity resolution as
∆vd. We need to search in the vd axis for a pe-
riod by the width of ∆vd/2. The number of searches
is expressed as i = 2vd0/∆vd. In this situation ∆vd

and vd0 are 0.1695 m/s and 6.1213 m/s, respectively,
where N = 16 and TIPP = 7,500 µsec. Therefore
i becomes 72 and the calculation time becomes 72
times faster than the vd updating method.

As we explained in Sec.1, the minimum detection size
of the KSGC radar system is 1 m2 for range 600 km.
We add a noise to the real data to clarify the im-
provement of the proposed detection method. From

the expected value, we roughly know that the range
of H2A-R/B is 895 km. According to the radar equa-
tion, the received power from the target whose RCS
= 1 m2 for range 600 km and the target whose RCS
= 4.95 m2 for range 895 km are equivalent. As the
RCS of H2A-R/B is 27.1 m2, its received power is
5.47 times larger than that from the minimum de-
tection size. We add Gaussian noise to the real data
to deteriorate the SNR to the condition of the detec-
tion limit.

Fig. 7 shows an example of the proposed detection
method applied to the experimental data of H2A-
R/B, where N = 16. The noise level is set to 0 dB.
The filter used in the conventional method assumes
the correct Doppler velocity, which gives the best re-
sult. The left figure shows signals in the region of
the observed range. The right figure is a close-up.
We can see the peak SNR is improved by 10.45 dB
compared with the conventional method. Moreover,
the estimated range which is obtained using the con-
ventional method is obviously wrong. On the other
hand, the estimated range and the Doppler velocity
which are obtained using the proposed method are
not improved. However, the estimated parameters
still contain substantial errors. Therefore a global
optimization is required from these parameters. In
the next section, we explain the global optimization
method from the detection parameters which are ob-
tained using the proposed detection method.

5. EFFECTIVE ORBIT ESTIMATION AL-
GORITHM

Here we explain the orbit estimation method. We
define the detected parameters using the detection
method which is explained in Sec.4 as xdet. We
search the global optimal solution with the initial
parameters xdet. A simple method is updating the
parameters to increase the evaluation value accord-
ing to vd0 in the direction of w. However, this simple
method does not work because the period slightly
changes due to the nonlinearity of the Doppler ve-
locity, which shows that the evaluation function has
quasi-periodicity. Eq. 7 is satisfied accurately when
we assume uniform motion in the line-of-sight. The
red line of Fig. 8 shows the model of this simple
method. Therefore, the obtained parameters by us-
ing this simple method are not accurate enough.

In order to obtain parameters accurately, we jump
to the next area according to vd0 in the direction
of w and optimize every suboptimal solutions. The
blue and the black lines of Fig. 8 show the model of
this method. However, this method requires a long
calculation time because it performs filtering for each
updating parameters. Therefore, we propose a new
orbit estimation algorithm.

Fig. 9 shows the model of the proposed orbit estima-
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Figure 7. Example of Proposed Detection Method Applied to the Real Data.

Figure 8. Quasi-period problems.

tion method. We have experimentally clarified that
the local Doppler velocity δvd is dominant for the
local shape of the evaluation function. In Fig. 9, we
regard the local search of vd as the local search of
δvd, ignoring the error of the response of the filter
and the motion model. Once we optimize r1 as step
4 in Fig. 9 and find the local peak, we jump to the
next area and update all the parameters as step 2 in
Fig. 9. The estimated errors of r1 and vd are small
enough compared with the true parameters. More-
over, the calculation time becomes about 25 times
faster than the method which performs filtering pro-
cessing repeatedly, where N = 16.
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Figure 9. Model of the Estimation Method.

The orbit estimation algorithm is described as fol-
lows:

1. Set xdet as the initial parameters.

2. According to vd0, update all parameters in the
direction of w.
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Figure 10. Example of Proposed Orbit Estimation
Method Applied to the Real Data.

3. Regard only δvd as a parameter, and optimize
δvd.

4. Optimize r1. Take a step towards 2.

Fig. 10 shows the result of the proposed orbit es-
timation method applied to the experimental data
in Fig. 7. Fig. 11 shows the state of the orbit esti-
mation in the vd section, which gives the evaluation
value 0.17 dB higher than the proposed detection
method. Tab. 2 is the comparison between the de-
tection, the orbit estimation, and the expected pa-
rameters, which shows the error of the estimated pa-
rameters are substantially reduced to 89 m for r1 and
21 m/s for vd, respectively.

Table 2. Comparison of the Detection, the Orbit es-
timation and the Expected Parameters

r1[km] vd[km/s] Gain [dB]
Detection 894.450 3.155 17.57
Estimation 894.549 3.235 17.74
Expected 894.460 3.256



 17.6

 17.7

 17.8

 3.14  3.16  3.18  3.2  3.22  3.24  3.26  3.28  3.3

P
o
w

er
[d

B
]

vd[km/sec]

H2A R/B March 2 2005 (N=16HIT)

Proposed Estimation (vd section)

Detection

Estimation

Figure 11. Orbit Estimation (vd Section).

6. ACCURACY EVALUATION OF THE
ESTIMATED PARAMETERS

We examine the accuracy of the estimated parame-
ters in this section. The conventional method, which
we explained in Sec. 2, uses a single pulse. It is unfair
to simply compare with the proposed method and
the conventional method, since the proposed method
uses plural pulses. Therefore, we improve the con-
ventional method to use plural pulses.

We integrate received signals incoherently and search
the Doppler velocity which maximize the output as

max
vd,t

N∑
i=1

∣∣∣∣∫ si(τ)hi(t − 2iTIPPvd/c − τ)dτ

∣∣∣∣2 , (9)

where c is the velocity of light. We call this method
as the conventional method in this section. Eq. 9
shows that we search vd which maximizes the re-
sponse of the filter using incoherent integration. This
method is simple because it does not require the
phases of signals. In this method, however, the esti-
mated error occurs even if SNR is infinity because we
assume the orbit of space debris as uniform motion
in the line-of-sight. Therefore, the accuracies of the
estimated parameters are not enough.

Fig. 12 shows the estimation error vs. peak SNR,
where the true x=(800 km, 4 km/s, 60◦) and N = 8.
The estimation error is evaluated as RMSE (Root
Mean Square Error). In this condition, the ac-
curacy limit of the conventional method is about
0.016 km/s for vd. This figure shows the accuracy
of the proposed method is better than the conven-
tional method for all SNR, particularly in low SNR.

7. SUMMARY

We propose the detection method for the signals from
space debris which cannot be detected using a sin-
gle pulse. We assume the orbit of space debris as
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Figure 12. Accuracy Comparison of the Proposed
and the Conventional Methods.

uniform motion in this proposed method. The cal-
culation time searching in the vd section becomes
about 72 times faster than the vd updating method,
where the number of the integration N = 16 and
IPP is 7,500 µsec. The proposed detection method
improves SNR by 10.45 dB to the KSGC real data,
H2A-R/B, with Gaussian noise to deteriorate the
SNR to the detection limit condition.

We propose the method to estimate the orbit of space
debris effectively with a high accuracy. The calcula-
tion time becomes about 25 times faster than the
method which requires filtering processing repeat-
edly. The proposed orbit estimation method im-
proves SNR only by 0.17 dB compared with the pro-
posed detection method, but the error of estimated
parameters are substantially reduced to 89 m for r1

and 21 m/s for vd, respectively. The estimation ac-
curacy of the proposed orbit estimation method is
better than the conventional method, particularly for
low SNR.
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