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ABSTRACT

It is hoped that rescue robots help human lives in the near
future. Recently, UWB(Ultra Wide Band) has been stan-
dardized in the USA, and it enables us to develop pulse
radars with high range resolution. This technology is a
promising candidate for the environment measurement
for robots. Radar imaging is known as one of ill-posed
inverse problems, for which various algorithms have been
proposed. Most of them were developed for continuously
distributed media such as the ground. Their calculation
time is too long because they are based on iterative meth-
ods, which is not acceptable for the realtime operation of
robots. On the other hand, most of in-house objects have
clear boundaries, which enables us to simplify the mod-
els. We have already proposed a fast imaging algorithm
SEABED for UWB pulse radars, which is based on a re-
versible transform by utilizing this simple model. The
performance of the SEABED algorithms has been inves-
tigated only with numerical simulations. In this paper, we
experimentally study the performance of the algorithm
with a UWB pulse radar experiment system.

Key words: UWB (Ultra Wide-Band); radar imaging; in-
verse scattering.

1. INTRODUCTION

Radar imaging is an important technique which has a
variety of applications including rescue robots for dis-
aster areas. It is known that radar imaging is one
of ill-posed inverse problems. A large number of al-
gorithms have already been proposed for this problem
[1, 2, 3, 4, 5, 6, 7, 8]. However, the conventional algo-
rithms require long calculation time because they were
developed for the imaging of general targets including
continuously distributed media such as the inside of the
ground or a human body. This problem causes a critical
difficulty in applying radars to realtime operation which
is needed for robots. In order to solve this problem, we
have proposed a fast 3-dimensional imaging algorithm,
SEABED [9, 10, 11, 12, 13, 14]. This algorithm is based

on a reversible transform between target shapes and ob-
served signals under a certain condition. It has already
been clarified that SEABED algorithm can accurately es-
timate 3-D target shapes in a short time with numerical
simulations. However, the performance of SEABED al-
gorithm has not been checked by experiments. In this pa-
per, we apply SEABED algorithm to experimental data
and investigate the performance of the algorithm. Ad-
ditionally, we propose a smoothing algorithm which en-
able us to enhance the robustness of SEABED algorithm
against a noisy environment. We apply this stabilization
method to the experimental data, and show the results.

2. SYSTEM MODEL

We assume a mono-static radar system. An omni-
directional antenna is scanned on a plane. UWB pulses
are transmitted at a fixed interval and received by the an-
tenna. The received data is A/D converted and stored in
a memory. We estimate target shapes using the obtained
data. Fig. 1 shows the system model.

We deal with a 3-dimensional problem. We define a real
space, where targets and the antenna are located. We
express the real space with the parameter (x, y, z). All
of x, y and z are normalized by λ, which is the center
wavelength of the transmitted pulse in the air. We as-
sume z > 0 for simplicity. The antenna is scanned on
x-y plane.

We define s′(X, Y, Z) as the received electric field at
the antenna location (x, y, z) = (X, Y, 0), where we
define Z with time t and speed of the radiowave c as
Z = ct/(2λ). We apply a matched filter of the trans-
mitted waveform to the received signals s′(X, Y, Z). We
define s(X,Y, Z) as the output of the filter. We normalize
X and Y by λ, and Z by the center period of transmitted
waveform, respectively. We define a data space expressed
by (X, Y, Z). SEABED algorithm extracts quasi wave-
fronts which are equiphase-surfaces in the data space.
The transform from the data space to the real space cor-
responds to imaging which we deal with in this paper.
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Figure 1. The coordinates and an example of a target
complex permittivity.

3. SEABED ALGORITHM

The following equations hold for (x, y, z) and (X, Y, Z).
⎧⎪⎨
⎪⎩

x = X − Z∂Z/∂X
y = Y − Z∂Z/∂Y

z = Z

√
1 − (∂Z/∂X)2 − (∂Z/∂Y )2,

(1)

This equation is called Inverse Boundary Scattering
Transform (IBST). SEABED algorithm obtains the tar-
get shapes by calculating the right hand side of Eq. (1).
Fig. 10 shows the estimated target shape in a numerical
simulation. Here we assume the true target shape as in
Fig. 1.

We have already developed a fast radar imaging algo-
rithm based on BST (Boundary Scattering Transform)
[9, 13]. We call the algorithm SEABED (Shape Estima-
tion Algorithm based on BST and Extraction of Directly
scattered waves). The algorithm utilizes the existence
of a reversible transform BST between target shapes and
pulse delays. We have clarified that the SEABED has an
advantage of direct estimation of target boundaries using
inverse transform, which is a mathematically complete
solution for the inverse problem. The algorithm has a re-
markable performance in estimating target shapes. The
SEABED utilizes the existence of a reversible transform
between quasi wavefronts and target boundary surfaces.
We assume that each target has a uniform complex per-
mittivity, and surrounded by a smooth boundary. We also
assume that the propagation speed is known. Here, we
assume the medium of direct path is vacuum for simplic-
ity.

4. SYSTEM MODEL AND SEABED ALGO-
RITHM

We assume a mono-static radar system in this paper. An
omni-directional UWB antenna is scanned on a plane.
We express the surface of the target in the real space with
the parameter (x, y, z). These parameters are normalized
by the center wavelength λ. s(X,Y, Z) is the received
signal at the antenna location (x, y, z) = (X, Y, 0),
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Figure 2. An example of a target shape and a quasi wave-
front for 2-D systems.

where we define Z with time t and speed of the radiowave
c as Z = ct/(2λ). We define a quasi-wavefront Z(X, Y )
which is a equi-phase surface extracted from s(X,Y, Z).
SEABED algorithm is based on a reversible transform
IBST. IBST describes the target shape (x, y, z) with the
quasi-wavefront (X, Y, Z) as

⎧⎪⎨
⎪⎩

x = X − Z∂Z/∂X
y = Y − Z∂Z/∂Y

z = Z

√
1 − (∂Z/∂X)2 − (∂Z/∂Y )2.

(2)

5. CHARACTERISTICS OF QUASI-
WAVEFRONTS

5.1. The Upper-bound for the Hesse Matrix of
Quasi-Wavefronts

Smoothing is an effective tool to solve the problem that
the image of the SEABED algorithm degrades due to
random components caused by noise and timing jitter.
For stationary signals, it is the best scheme to apply the
smoothing by the convolution with the impulse response,
which corresponds to the matched filter. However, tar-
get shapes as 2-D signals are not stationary because they
have arbitrary shapes including planes, curved surfaces
and edges, which implies that the smoothing is difficult
to apply to them. On the other hand, the smoothing of



quasi-wavefronts is suitable for the stabilization without
spoiling the resolution, because the quasi-wavefronts for
convex targets are guaranteed to be smooth. The quasi-
wavefronts, however, are neither stationary signal, so it is
effective to adaptively change the kernel function to use
for the smoothing depending on the smoothness of the
surfaces. In this section, we deal with a Hesse matrix as a
local smoothness of the surface of quasi-wavefronts, and
discuss the Hesse matrix HZ of the quasi-wavefront for
concave targets. Additionally, we analytically derive the
optimum smoothing method based on the characteristics
of the quasi-wavefronts.

First, we investigate the characteristics of the Hesse ma-
trix of concave surfaces. The Hesse matrix Hz for con-
cave surface z(x, y) is defined as

Hz =
[

zxx zxy

zyx zyy

]
, (3)

which is a positive definite matrix. Therefore, the follow-
ing inequalities holds.

trHz = zxx + zyy > 0 (4)

detHz = zxxzyy − z2
xy > 0 (5)

Next, we show that the inequality xX > 0 holds, which
characterize the position of the scattering center for con-
vex targets. This inequality means that the scattering cen-
ter for the received echo moves to the same direction as
the antenna moves. This characteristic is important to in-
vestigate the Hesse matrix of a quasi-wavefront. By solv-
ing Eq. (2) for x and obtain

x = X − zzx. (6)

We partially differentiate this equation for X with Y fixed
and obtain

xX = 1 − (z2
x + zzxx)xX − (zxzy + zzxy)yX . (7)

We solve this equation for xX and obtain

xX =
1 − (zxzy + zzxy)yX

1 + z2
x + zzxx

. (8)

Similarly, we obtain yX as

yX = −(zxzy + zzxy)xX

1 + z2
y + zzyy

. (9)

By utilizing Eqs. (8) and (9), xX is expressed as

xX =
1

d1 + d2 + d3 + d4
, (10)

d1 = 1 + z2
x + z2

y , (11)

d2 = z(zxx + zyy) = z trHz, (12)

d3 = z2(zxxzyy − z2
xy) = z2detHz, (13)

d4 = z(z2
xzyy + z2

yzxx − 2zxzyzxy), (14)
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Figure 3. The relationship between the target shape and
the sign of xX for the 2-D case.

where d1 > 0, d2 > 0 and d3 > 0 hold by utilizing z > 0
and Eqs. (4) and (5).

As for d4, we discuss as follows. The discriminant of the
2nd order equation d4 = 0 for zx is D = −4z2z2

ytrHz ≤
0, z2z2

yy > 0 holds for the coefficient of z2
x. Therefore,

d4 is the convex parabola smaller than 0, that means d4 ≥
0. By considering the conditions for d1, d2, d3, d4, and
Eq. (10),

xX > 0 (15)

holds. Fig. 3 shows the relationship between the target
shape and the sign of xX for the 2-D system. In this fig-
ure, the antenna X and and the scattering center x move
to the same directions for the cases A and B. On the other
hand, they move to the opposite directions for the case C.
The convex target dealt with in this paper corresponds to
the case A. Note that these figures are for the 2-D system,
not for the 3-D system, and the motion of the scattering
center for the 3-D case also depends on the shape for the
direction y, which is not so simple as the 2-D case in
Fig. 3.

For point targets and edges, all of d1, d2, d3 and d4 in
Eq. (10) diverge to +∞ and the equation xX = 0 holds.
This means that the scattering center does not move be-
cause the echoes for point targets and edges are not re-
flections but diffractions. On the other hand, xX > 0
always holds for smooth surfaces.

We investigate the upper-bound of the eigenvalues of
the Hesse matrix HZ for a quasi-wavefront by utilizing
Eq. (15). With the upper-bound of the eigenvalues, we
can estimate the smoothness of the quasi-wavefront ob-
tained with the received data, which enables us to suit-
ably select the correlation length for smoothing. We solve
Eq. (2) for ZX and obtain

ZX = (X − x)/Z. (16)



We differentiate Eq. (16) for X and obtain

ZXX =
(1 − xX)Z − (X − x)ZX

Z2
. (17)

By substituting Eq. (16) to Eq. (17) and obtain

ZXX =
1 − Z2

X − xX

Z
. (18)

Because xX > 0 in Eq. (15) holds, We obtain the follow-
ing inequality

ZXX <
1 − Z2

X

Z
. (19)

This equation means that the diagonal elements of the
Hesse matrix HZ have the upper-bound, which is deter-
mined by the quasi-wavefront and its partial derivatives.

The smoothness of the curved surfaces is determined by
the eigenvalues of the Hesse matrix. Especially, it is in-
dispensable to know the maximum eigenvalue to suppress
the distortion caused by the smoothing. Eq. (19) is one of
the diagonal elements of the Hesse matrix. If X is par-
allel to the maximum eigenvector of the Hesse matrix at
(X, Y ), the right-hand side of the equation is the upper-
bound of the maximum eigenvalue. Therefore, for the
maximum eigenvalue e of the Hesse matrix HZ ,

e <
1 − Z2

V

Z
(20)

holds, where ZV is the partial derivative in the direction
of the eigenvector for the maximum eigenvalue. Addi-
tionally, the following inequality holds because of Z2

V ≥
0 as

e <
1
Z

. (21)

This equation means that the upper-bound of the smooth-
ness of the quasi-wavefront depends only on the time de-
lay of the echo. The smoothness is guaranteed especially
for the convex target in the far-field. The inequality of
Eq. (21) becomes an equation for point targets or edges.
The quasi-wavefronts for the point target on the z-axis, is
expressed as hyperbolic surfaces Z =

√
X2 + Y 2 + Z2

0
for the distance Z0 between the target and the scan plane.
The vertical section on X-Z plane is shown in Fig. 4.
This figure includes multiple quasi-wavefronts for differ-
ent positions of point targets. The intercept of each curve
is equal to the position Z0.

This figure shows that the upper-bound of the curvature
becomes small as the distance Z becomes large. Espe-
cially, the quasi-wavefront for the point target close to
the scan plane has a large curvature around X = 0, which
makes it difficult to smooth with long correlation length.

5.2. Proposed Smoothing Method

In this section, we propose the smoothing method based
on the discussion in the previous section. We deal with
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Figure 4. Quasi wavefronts of the echoes from point tar-
gets.

the smoothing by the convolution with a Gaussian func-
tion

g(X, Y ; σ) =
1

2πσ2
exp

(
−X2 + Y 2

2σ2

)
. (22)

This Gaussian function includes only one parameter σ,
the correlation length. We adaptively change σ depend-
ing on the smoothness of the quasi-wavefront. For exam-
ple, if the eigenvalue of the Hesse matrix of the quasi-
wavefront is small, the quasi-wavefront is close to a
plane, to which we can apply the smoothing with a long
correlation length. On the contrary, we have to set short
correlation length for large eigenvalues in order to avoid
the degradation of the resolution of the image. If we know
the Hesse matrix HZ , we can obtain the suitable param-
eter of the Gaussian function by utilizing the eigenvec-
tor. However, it is needed to calculate the 2nd deriva-
tive in order to obtain the Hesse matrix, which can be the
cause of the instability. In our proposed method, we uti-
lize the Eq. (21) instead of the calculation of the Hesse
matrix. The right-hand side of Eq. (21) overestimate the
curvature of the quasi-wavefront, which means that we
can avoid the degradation of the resolution.

We determine the correlation length as follows. We de-
fine the distortion δ caused by the smoothing with a Gaus-
sian function as

δ =
∣∣∣∣
∫ ∫ ∞

−∞
g(X, Y ; σ)Z(X, Y )dXdY − Z(0, 0)

∣∣∣∣ .
(23)

We locally replace the quasi-wavefront by the quadratic
surface Z(X, Y ) = a(X2 + Y 2)/2 + bX + cY + d at
(X, Y ) = (0, 0). For the quadratic surface, the char-
acteristic equation has a double root, and the maximum
eigenvalue is e = a. We estimate the worst distortion by
utilizing the quadratic surface. The maximum correlation
length σ for a certain acceptable distortion δmax is deter-
mined as σ ≤ √

δmax/πa by utilizing Eq. (23). Consid-
ering the condition a = e < 1/Z based on Eq. (21), we
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Figure 5. True target shape.

Figure 6. Conical metallic object used for the experiment.

obtain
σ =

√
δmaxZ/π. (24)

We propose the smoothing by the convolution with the
Gaussian function with the correlation length the right-
hand side of Eq. (24).

6. EVALUATION OF THE PROPOSED SMOOTH-
ING BY AN EXPERIMENT

In this section, we apply the SEABED algorithm to the
experimental data, and investigate the performance of the
proposed algorithm. We deal with 3 types of smoothing,
the one without smoothing, the one with the smoothing in
the real space, and the one with the proposed smoothing
in the data space.

The target shape used for an application example is
the conical metallic object shown in Fig. 5. For the
center wavelength 9.1cm, the radius of the bottom is
1.64λ(14.9cm), the height is 1.1λ(9.8cm), the distance
between the vertex and the scan plane is 0.93λ(8.5cm).
The cone is a difficult to smooth because it includes both
of a smooth surface and a sharp edge. The target object
used in our experiment is shown in Fig. 6.

We investigate the performance of the SEABED algo-
rithm for experimental data. Fig. 7 shows the quasi-
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Figure 7. Quasi wavefront extracted from the experimen-
tal data.

2.2
2

1.8
1.6
1.4
1.2

1
0.8

z

y x-2-1 0 1 2
-2 -1  0  1  2

Figure 8. Estimated target shape of SEABED algorithm
without smoothing.

wavefront estimated with the experimental data. We see
random component with large error around the center of
the quasi-wavefront because the echo around the center
is not a reflection but a diffraction, which has relatively
small S/N. Fig. 8 shows the estimated image obtained
by the original SEABED algorithm without smoothing,
where we utilize the modified transform to compensate
for the distance between the antennas [15]. The exper-
imental data contain random components such as noise
and timing jitter. The inverse transform utilize the deriva-
tive operations, which is sensitive the random compo-
nents. Fig. 9 shows the smoothed image obtained by ap-
plying the smoothing with the correlation length of 0.1λ
to the image in Fig. 8. The quality of this image is poor
both for the resolution and the stability against noise.

Next, we apply the proposed smoothing method to the
experimental data. Fig. 10 shows the estimated image by
utilizing the proposed smoothing technique with the suit-
able correlation length σ determined in Eq. (24). Here
we empirically set the acceptable distortion as δmax =
0.12λ. In this figure, the smooth surface and edge are cor-
rectly estimated, which means that both of the resolution
and stability are achieved by the proposed method. Espe-
cially, the proposed algorithm preserves the edge while
the random components are suppressed well.
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Figure 9. Estimated target shape of SEABED algorithm
with a smoothing in the real space.
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Figure 10. Estimated target shape of SEABED algorithm
with the proposed smoothing in the data space.
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