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Abstract—This paper presents a method of estimating tar-
get location and scattered waveforms, whose accuracies are
interdependent. The technique relies on iterative improve-
ments of estimated dominant-frequency waveforms. De-
scription of the algorithm is followed by statistical simu-
lation examples. The performance of the technique is con-
trasted with conventional methods and statistical bounds in
terms of target locationing accuracy. Results indicate that
our proposed method has a remarkable performance, which
is close to the theoretical limit.
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I. Introduction

ENVIRONMENT measurement is an important issue
for various applications including household robots.

Radars utilizing ultra-wide-band (UWB) pulses, for which
FCC has recently set a standard, are promising candidates
in a near future. We have developed imaging algorithms for
pulse radar systems based on the model fitting[1], which re-
quire a good initial guess of the location of targets. Target
locationing using non-parametric algorithms can be used to
provide an initial guess. Although non-parametric target
locationing algorithms have also been proposed[2], many of
conventional algorithms have a poor ranging accuracy com-
pared with their estimation accuracy of DOA (Direction
Of Arrival). Our objective is to develop a non-parametric
super-resolution target locationing algorithm by improving
the ranging accuracy iteratively.

An appropriate filtering is essential for a precise rang-
ing. However, accurate noise reduction with Wiener filter
requires information of the scattered waveform. On the
other hand, target location estimation is indispensable to
the waveform estimation. Therefore, it is required to es-
timate target locations and scattered waveforms simulta-
neously. In this paper, we propose a method which simul-
taneously estimates target locations and scattered wave-
forms for UWB pulse radar systems with array sensors.
Moreover, we examine the performance of our method by
contrasting it with conventional methods and statistical
bounds using numerical simulations.

II. System Model

We assume an M -element linear sensor array with inter-
vals of half-wavelength at the center frequency of the pulse,
and one point target located within its near field. Fig. 1
shows the location of the sensor array and the coordinates,
where λ is the center wavelength of the transmitted signals.
We also define T = [Tx, Ty] as the real target location. The
transmitted pulse is a mono-cycle pulse, which is suitable

for radar systems because it has no DC power. We assume
the received waveform is the 1st order differential of the
transmitted waveform. The scattered wave is a spherical
wave because the target is within the near field. There-
fore, the signal delay draws a hyperbola as a function of
the location of the sensors. We assume that the observer
has no information of scattered waveforms.

We deal with a 2-dimensional problem in the paper. We
also define a signal image s(x, y) as

s ((m − (M − 1)/2) d/λ, ct/λ) ≡ s′m(t), (1)

where s′m(t) is the received signal with the m-th sensor,
c is speed of the light, and d = λ/2. This definition of
a signal image is advantageous because space x and time
y are normalized by wavelength. Our algorithm estimates
the target location T using the signal image s(x, y). Table
1 shows the simulation parameters.
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Fig. 1. The location of the sensor array and coordinates used in the
present paper.

TABLE I

Simulation Parameters.

Sensor Array M = 11
Sensor Interval 0.5λ
IHCT Iteration 40times

Observation Duration 24λ
Sampling 83 samples/λ

III. Waveform and Filtering

In this section, we explain the importance of estimating
waveforms in the proposed algorithm. Wiener filter is often
used for estimation of the turn-around-time because it is
an effective denoising filter. Wiener filter for signal G(ω)
is expressed as

W (ω) =
G∗(ω)

(1 − η) + η|G(ω)|2 , (2)



where η = 1/(1 + (S/N)−1). W (ω) works as an inverse
filter for large S/N (η � 1). On the other hand, it works
as a matched filter for small S/N (η � 0). Here, we define
the signal power S = max |s(x, y)|2. W (ω) is the optimal
filter, so it minimizes the mean square error between the
output signal and the impulse function. However, we can
not directly apply Wiener filter to our purpose, because
W (ω) requires the scattered waveform G(ω). This is the
reason why our proposed method is important.

IV. Theoretical Limit of Estimation

In this section we derive the theoretical limit for our
problem. The derived theoretical limit is based on Cramer-
Rao lower bound (CRLB). We define RT −T i

as the covari-
ance matrix of the estimation error of the target location.
The original expression of CRLB is

RT −T i
≥ J−1(T ), (3)

where J(T ) is Fisher information matrix expressed as

J(T )m,n = −E
{∫∫

∂2 log p (s|T )
∂Tj∂Tk

dxdy

}
, (4)

where p(s|T ) is the conditional probability density func-
tion of s(x, y) and j, k ∈ {x, y}. We can not directly
use Eq.(3) because the estimation error is expressed as
ei = |T − T i|. We thus define q(∆T ) as the probability
density function of ∆T = T − T e, where T e is the theo-
retically best estimation. We assume q(∆T ) as

q(∆T ) =
(detJ(T ))1/2

2π
exp

[
−1

2
∆TJ(T )∆T T

]
. (5)

Assuming Eq.(5) gives

ei ≥ eCRLB =
∫ ∞

−∞
|∆T |q(∆T )d∆T . (6)

eCRLB is the theoretical limit for the estimation of target
location. We calculate eCRLB for each S/N in order to
contrast with the simulation results. We call eCRLB as
CRLB for simplicity in the following sections.

V. The Proposed Method

In this section, we explain the proposed algorithm. We
define the estimated target location for i-th iteration as
T i = (xi, yi). We define Hyperbolic Coherent Transform
(HCT) as

H(ω, T i) ≡
∫∫ ∞

−∞
s(x, y)

ejω[u(x,T i)−y]√
u(x,T i)

dxdy, (7)

where we define

u(x,T i) ≡ |T i| +
√

(x − xi)2 + y2
i . (8)

HCT works as the Fourier transform for y. u(x,T i) is a
delay time compensation for x.

√
u(x,T i) is required in

order to improve S/N of HCT. HCT estimates F (ω), which
is the Fourier transform of the scattered waveform, using
coherent integral of the received signals. We can describe
the algorithms of target location estimation as

maximizeT i+1

∣∣∣∣
∫ ∞

−∞

H(ω, T i+1)P ∗
i (ω)

1 − η + η|Pi(ω)|2 dω

∣∣∣∣
2

, (9)

where Pi(ω) is the waveform used for constructing Wiener
filter. Eq.(9) includes all algorithms we investigate in the
paper, which depends on the definition of Pi(ω). We set the
initial waveform H(ω, T 0) as the Fourier transform of the
transmitted waveform. We optimize Eq.(9) using Quasi-
Newton Method algorithm, where we set the initial value
of T i to the optimized T i−1. We determine the initial
value of T 1 using a simple grid search.

We set Pi(ω) to

Pi(ω) = (H(ω, T i) ∗ sinc(t0ω)) |Pi−1(ω)| (10)

for the proposed algorithm. We call the proposed algo-
rithm IHCT (Iterative HCT) because it is based on it-
erative improvement of estimation. Eq.(10) works as ex-
traction of dominant-frequency waveform. Convolution of
sinc(t0ω) is a simple windowing, which prevent the wave-
form from having extremely narrow band. We set t0 to
the pulse duration of the transmitted signal. Fig.2 shows
the outline of IHCT. We also define IHCTW (IHCT With-
out waveform estimation) which is a conventional method.
We set Pi(ω) for IHCTW as Pi(ω) = H(ω, T 0), which
is the transmitted waveform. Moreover, we investigate
IHCTK (IHCT with Known scattered waveform) which
represents the ideal situation. We set Pi(ω) for IHCTK
as Pi(ω) = F (ω), which is the true scattered waveform.
IHCTK is not realistic because F (ω) is unknown in an
actual case. Table 2 shows Pi(ω) for each method.

TABLE II

Pi(ω) (Denoised HCT) for each method.

IHCT (H(ω, T i) ∗ sinc(t0ω)) |Pi−1(ω)|
IHCTW H(ω, T 0)
IHCTK F (ω)

Waveform
Estimation

Target
Location

Estimation

Wiener
Filter

Adaptive
Denoising

Fig. 2. The outline of IHCT.



VI. Performance Evaluation

In this section we investigate the performance of the
proposed method by contrasting with the conventional
method and the theoretical limit. Fig.3 illustrates the
waveform of Pi(ω) for i = 1, 5 and 10. The bandwidth of
the waveform becomes narrower as the iteration proceeds.

Fig.4 shows the locationing accuracy of each algorithm
compared to CRLB. Here, we set the target location to
T = (2λ, 2λ). The relationship between the estimation er-
ror eL and the peak S/N is illustrated in the figure. IHCT,
IHCTW and IHCTK have poor performance for S/N <
11dB due to invalid initial guess of T 1, which is caused by
small S/N. IHCTK achieves CRLB for S/N ≥ 11dB, which
means the optimization in Eq.(9) can achieve the theoret-
ical limit only if we know the scattered waveform F (ω).
IHCTW has a floor of estimation error for S/N ≥ 11dB,
which is caused by biases due to the fixed reference wave-
forms. The difference between the transmitted waveform
and the scattered waveform causes this error. On the other
hand, the performance of IHCT is close to CRLB. The ra-
tio of the estimation accuracy of IHCT to that of CRLB
is 1/4 at most. The estimation error of IHCT has no floor
for S/N ≤ 40dB. The estimation accuracy of IHCT is
140 times better than that of IHCTW. Moreover IHCT
achieves an accuracy of 10−3λ for S/N > 34dB.

Fig.5 shows the estimation error of target location using
IHCT for various target locations for S/N = 40dB. From
the figure, we see that the order of estimation error is
10−3λ for all target location except for the two areas on
both sides of the array. The poor performance of IHCT in
the two areas is caused by the ambiguity of the signal with
target locations.
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Fig. 3. Estimated dominant-frequency waveforms.

VII. Summary

UWB pulse radar sysmtes are promising candidates for
environment measurement. In the present paper, we pro-
posed a high-resolution algorithm for target locationing
without information of scattered waveforms. The pro-
posed method simultaneously estimates target locations
and scattered waveforms for UWB pulse radar systems.
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Fig. 4. Estimation error of the target location.

Fig. 5. Estimation error for various target locations.

The proposed method estimates dominant-frequency wave-
forms of scattered waveform iteratively. We also examined
the performance of our method by contrasting them with
conventional methods and statistical bounds. We evalu-
ated the performance in terms of the estimation accuracy
of target locations utilizing numerical simulations. We
showed that the performance of the proposed method is
close to the theoretical limit. We clarified that the estima-
tion accuracy of the proposed method is 140 times better
than that of the conventional method. We also made it
clear that the proposed method achieves an accuracy of
10−3λ for S/N > 34dB.
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