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PAPER
Analytical Expression of Capon Spectrum for Two Uncorrelated
Signals Using the Inner Product of Mode Vectors

Takuya SAKAMOTO†,††a) and Koji NISHIMURA†††, Members

SUMMARY An analytic expression of the Capon spectrum is derived
for two uncorrelated incident signals. On the basis of this theoretical for-
mulation, we discuss the effect of a factor arising from the inner product of
mode vectors with respect to the incident angles, which compromises the
resolution. We show numerical examples to demonstrate the effect that the
inner product of mode vectors has on the shape of the Capon spectrum.
key words: Capon method, antenna array, mode vectors

1. Introduction

The Capon method is well-known as a super-resolution al-
gorithm for estimating directions of arrival using an antenna
array. Although this method was proposed decades ago [1],
its robustness and simple implementation have been of late
driving its popularity and widespread use [2]–[9] including
its application to sensing [10]–[14], antennas and propaga-
tion [15]–[19], and signal processing [20], [21]. Nonethe-
less, it is still extremely important to understand in an an-
alytical way what determines the shape of the Capon spec-
trum. This is because the spectrum shape is affected by var-
ious factors when applying the Capon method to measured
data. To assess the influence of each factor, an analytical
expression is helpful and important to determine the cause
of spectrum deformation that compromises the resolution.

An analytical spectrum obtained using the Capon
method is derived for two uncorrelated incident signals and
is compared with a simulated spectrum to evaluate the in-
ner product of mode vectors (IPMV). Although Capon [1]
derived such a spectrum for two incident waves, the contri-
bution from the IPMV was not clear in his formula. The
formula derived in this paper clearly explains the effect of
the IPMV on the shape of the Capon spectrum.
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2. Beamformer and Capon Spectrum

2.1 System Model and Beamformer Method

We assume a one-dimensional N-element linear antenna ar-
ray and two uncorrelated signals (signals 1 and 2) with in-
cident angles θ1 and θ2, satisfying θ1 < θ2. The received
signals are denoted x = [x1, x2, · · · , xN]T + n, where su-
perscript T denotes the transpose operation and n is an in-
dependent and identically distributed N-dimensional white
Gaussian noise vector. The correlation matrix R is defined
as R = E[xxH], where E[·] denotes an expectation operator
and superscript H denotes the conjugate transpose operation.

The spectrum of a beamformer (Fourier method) is ex-
pressed as PF(θ) = aH(θ)Ra(θ), where a(θ) is the mode vec-
tor defined by

a(θ) = [1, ejkd sin θ, ej2kd sin θ, · · · , ej(N−1)kd sin θ]T. (1)

Here k is the wavenumber and d is the antenna spacing.
Given the two incident signals, R is specifically ex-

pressed as

R = a2
1u1uH

1 + a2
2u2uH

2 + σ2I, (2)

where a2
1 and a2

2 denote the power of signals 1 and 2, σ2 is
the power of the noise, u1 and u2 are the mode vectors for
θ1 and θ2, respectively, and expressed as u1 = a(θ1), and
u2 = a(θ2).

The beamformer spectrum then is expressed as

PF(θ) = N2a2
1|B1(θ)|2 + N2a2

2|B2(θ)|2 + σ2, (3)

where B1(θ) = uH
1 a(θ)/N, B2(θ) = uH

2 a(θ)/N, |B1(θ)|2 =

aH(θ)u1uH
1 a(θ)/N2, and |B2(θ)|2 = aH(θ)u2uH

2 a(θ)/N2. We
note that the beams B1(θ) and B2(θ) have a dynamic range
0 ≤ |B1(θ)|2, |B2(θ)|2 ≤ 1. They take maximum val-
ues of |B1(θ1)|2 = |B2(θ2)|2 = 1 and minimum values of
|B1(θ)|2 = |B2(θ)|2 = 0 when θ satisfies a(θ1)Ha(θ) = 0 and
a(θ2)Ha(θ) = 0, respectively.

2.2 Derivation of the Theoretical Capon Spectrum

The Capon spectrum is obtained by solving the following
optimization problem

wC(θ) = arg minw wHRw
subject to wHa(θ) = N, (4)

Copyright c© 2020 The Institute of Electronics, Information and Communication Engineers
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which can be solved using the method of Lagrange multipli-
ers. With wC obtained as

wC(θ) =
NR−1a(θ)

aH(θ)R−1a(θ)
, (5)

then the Capon spectrum is finally given as

PC(θ) = wH
CRwC =

N2

aH(θ)R−1a(θ)
. (6)

Equation (2) can be written as

R = UTUH + σ2I, (7)

where U = [u1,u2], T = diag{a2
1, a

2
2} and I is a N×N identity

matrix. Using the Woodbury matrix identity [22]–[24] (see
Appendix), R−1 is expressed as

R−1 = (σ2I + UTUH)−1

= σ−2I − σ−4U(T−1 + σ−2UHU)−1UH,
(8)

where T−1 = diag{1/a2
1, 1/a

2
2}. Thus,

R−1 = σ−2I − σ−4UD−1UH, (9)

where

D =

[
1/a2

1 + N/σ2 Nρ/σ2

Nρ∗/σ2 1/a2
2 + N/σ2

]
. (10)

We introduce the expression ρ = uH
1 u2/N, which re-

flects the similarity between the mode vectors u1 and u2.
Next, we define the quantity IPMV because the similarity is
calculated using the inner product of the vectors. The IPMV
is a complex-valued constant written as

ρ =
1
N

N−1∑
l=0

e jkdl(sin θ2−sin θ1)

=
1
N

e jkdN(sin θ2−sin θ1) − 1
e jkd(sin θ2−sin θ1) − 1

,

(11)

which represents the inner product of mode vectors u1
and u2. We note that when the pair, θ1 and θ2, satisfies
kdN(sin θ2 − sin θ1) = 2mπ with m integer, ρ = 0 and the
IPMV vanishes, and matrix D becomes diagonal.

With det D denoting the determinant of D,

det D ≡
 1

a2
1

+
N
σ2

  1
a2

2

+
N
σ2

 − N2|ρ|2

σ4 , (12)

then the inverse of the matrix D is

D−1 =
1

det D


1
a2

2

+
N
σ2 −

Nρ
σ2

−
Nρ∗

σ2

1
a2

1

+
N
σ2

 , (13)

which leads to

UD−1UH =
1

det D

·

 1
a2

2

+
N
σ2

 u1uH
1 +

 1
a2

1

+
N
σ2

 u2uH
2

−
Nρ
σ2 u1uH

2 −
Nρ∗

σ2 u2uH
1

}
=

σ2/N(
1 + γ2

1

) (
1 + γ2

2

)
− |ρ|2γ2

1γ
2
2

·
{
γ2

1

(
1 + γ2

2

)
u1uH

1 + γ2
2

(
1 + γ2

1

)
u2uH

2

−2γ2
1γ

2
2Re[ρu1uH

2 ]
}

=
σ2

N
(c1u1uH

1 + c2u2uH
2 − c12Re{ρu1uH

2 }),

(14)

where γ2
1 = Na2

1/σ
2 and γ2

2 = Na2
2/σ

2 are the signal-to-
noise ratios (S/N) for signals 1 and 2 that includes the gain
of the array factor for N elements. The coefficients c1, c2,
and c12 are defined as

c1 =
γ2

1

(
1 + γ2

2

)(
1 + γ2

1

) (
1 + γ2

2

)
− |ρ|2γ2

1γ
2
2

, (15)

c2 =
γ2

2

(
1 + γ2

1

)(
1 + γ2

1

) (
1 + γ2

2

)
− |ρ|2γ2

1γ
2
2

(16)

and

c12 =
2γ2

1γ
2
2(

1 + γ2
1

) (
1 + γ2

2

)
− |ρ|2γ2

1γ
2
2

. (17)

Finally, we obtain the inverse correlation matrix

R−1 =
1
σ2 I−

1
Nσ2

{
c1u1uH

1 + c2u2uH
2 − c12Re[ρu1uH

2 ]
}
.

(18)

Substituting this equation into Eq. (6), we obtain

PC(θ) =
N3σ2

aH
(
NI − c1u1uH

1 − c2u2uH
2 + c12Re[ρu1uH

2 ]
)

a

=
Nσ2(

1 − c1|B1|
2 − c2|B2|

2) + c12Re[ρB∗1B2]
.

(19)

Specifically, Bi(θ) (i = 1, 2) is written as

Bi(θ) =
1
N

N−1∑
l=0

e jkdl(sin θ−sin θi),

=
1
N

e jkdN(sin θ−sin θi) − 1
e jkd(sin θ−sin θi) − 1

.

(20)

By substituting Eq. (20) to Eq. (19), the Capon spectrum for
two incident waves can be written explicitly.

Note that the simple expression in Eq. (19) was derived
using the Woodbury matrix identity, whereas Capon [1] in-
stead used the Sherman–Morrison formula [25] expressed



454
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

as (A + uuT)−1 = A−1 − A−1uuTA−1/(1 + uTA−1u), which is a
special case of the Woodbury matrix identity [22]. Cox [26]
applied the Sherman–Morrison formula twice and obtained
a similar equation. However, the theoretical spectrum (19)
is not found in their papers [1], [26]. Equation (19) gives a
clear perspective on the spectral shape because it explicitly
shows the IPMV contribution to the resultant spectrum.

2.3 Capon Spectrum in Special Cases

In a special case where there is only a single incident signal,
i.e., a2

1 , 0, a2
2 = 0 (thus γ2

1 , 0 and γ2
2 = 0), c2 and c12 both

vanish, and thus the Capon spectrum is written as

PC(θ) = Nσ2 1 + γ2
1

1 + γ2
1(1 − |B1(θ)|2)

. (21)

In this case, PC(θ) has a dynamic range

Nσ2 ≤ PC(θ) ≤ Nσ2(1 + γ2
1). (22)

We define the beamwidth WBF of |B1(θ)|2 as WBF = |θ(2)
3 dB −

θ(1)
3 dB|, where |B1(θ(1)

3 dB)|2 = |B1(θ(2)
3 dB)|2 = 1/2. Substituting

θ = θ(i)
3 dB (i = 1, 2) into Eq. (21), we obtain

PC(θ(i)
3 dB) = Nσ2 1 + γ2

1

1 + γ2
1/2

. (23)

Dividing Eq. (23) by the maximum value of PC(θ) gives

PC(θ(i)
3 dB)/max

θ
PC(θ) =

1
1 + γ2

1/2
. (24)

From Eq. (24), we observe that the Capon spectrum PC(θ)
has a sharper peak than the beamformer spectrum |B1(θ)|2,
which corresponds to the condition 1/(1 + γ2

1/2) < 1/2 if
γ2

1 > 2 corresponding to S/N > 3 dB.
In another special case, if the mode vectors for θ1 and

θ2 are orthogonal, i.e. IPMV vanishes (ρ = 0), and if the
signals have the same power a2

1 = a2
2, the Capon spectrum

simplifies,

PC(θ) = Nσ2 1 + γ2
1

1 + γ2
1(1 − |B1(θ)|2 − |B2(θ)|2)

, (25)

which seems a straightforward extension of the single-signal
case in Eq. (21). The spectrum also has two peaks at θ1 and
θ2, both peaks having the same width as the single-signal
case. The dynamic range of PC(θ) is also the same as the
single-signal case as in Eq. (22). We note that as long as
IPMV ρ is sufficiently small, the resolution of the Capon
method can be deduced simply from the beam width of
the Capon spectrum discussed above. In contrast, when ρ
is nonzero, the term c12Re[ρB∗1B2] affects the shape of the
spectrum unlike single-signal cases.

3. Numerical Examples

We next compare the analytical Capon spectrum in Eq. (19)

Fig. 1 The theoretical (black solid line), approximated with ρ = 0 (black
dashed line), and the simulated (red circles) Capon spectra for N = 10,
θ1 = −12◦, θ2 = 23◦, and γ2

1 = γ2
2 = 10.

and the simulated spectrum. We assume hereafter half-
wavelength antenna spacings d = λ/2. For a 10-element
array (N = 10), θ1 = −12◦, θ2 = 23◦, σ2 = 0.1 and
γ2

1 = γ2
2 = 10 corresponding to S/N = 10 dB, the theo-

retical (black solid line) and simulated (red circles) Capon
spectra are compared (Fig. 1), for which the simulated spec-
trum was calculated using Eq. (6) and R given by Eq. (2),
which corresponds to an infinite number of snapshots, com-
pletely uncorrelated signals, and white uncorrelated noise
components. The result indicates good agreement between
the two spectra. In this case, IPMV was |ρ| = 2.6 × 10−3.
Next, we set ρ = 0 in the analytical spectrum expressions to
evaluate the contribution of ρ to the spectrum shape. The ap-
proximated spectrum with ρ = 0 is drawn as a black dashed
line in Fig. 1, which almost completely overlaps the theo-
retical spectrum (black solid line), indicating that the effect
of ρ is not significant compared with the spectrum floor (0
dB). The root mean square (RMS) errors of the strict and ap-
proximated spectra were 3.5 × 10−15 and 2.4 × 10−3, which
indicate that the inner product of the mode vectors does not
significantly affect the Capon spectrum in this case. We re-
mark that the RMS error ε was calculated from

ε =

√
1
π

∫ π/2

−π/2
|PC(θ) − Psim(θ)|2dθ, (26)

where PC(θ) and Psim(θ) are the analytical and simulated
Capon spectra, respectively.

We present another example of a 10-element array
(N = 10), θ1 = 2◦, θ2 = 19◦, σ2 = 0.1 and γ2

1 = γ2
2 = 10 cor-

responding to S/N = 10 dB. The analytical, approximated
and simulated spectra are shown as a black solid line, black
dashed line, and red circles in Fig. 2. It is observed that
the approximated spectrum in the figure overestimates the
peaks, giving erroneously sharper beams. In this case, the
modulus of the IPMV |ρ| = 0.22, a value which is larger than
that of the previous case. The RMS errors of the strict and
approximated (ρ = 0) spectra were 3.7 × 10−15 and 1.4. In
this case, the IPMV has a significant influence on the Capon
spectrum unlike the previous case.
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Fig. 2 The theoretical (black solid line), approximated (ρ = 0) (black
dashed line), and simulated (red circles) Capon spectra for N = 10, θ1 = 2◦,
θ2 = 19◦, and γ2

1 = γ2
2 = 10.

Fig. 3 The theoretical (black line), approximated with ρ = 0 (black
dashed line), and simulated (red circles) Capon spectra for N = 10, θ1 = 5◦,
θ2 = 12◦ and γ2

1 = γ2
2 = 10.

Figure 3 shows the theoretical, approximated, and sim-
ulated spectra for a 10-element array (N = 10), θ1 = 5◦,
θ2 = 12◦, σ2 = 0.1 and γ2

1 = γ2
2 = 10 corresponding

to S/N = 10 dB. In this case, the IPMV |ρ| = 0.50 was
larger than those in the previous cases and the RMS errors
of the strict and approximated spectra were 8.4 × 10−15 and
13.0. Similar to the previous case, nonzero IPMV gives er-
roneously sharp peaks of the dashed line in Fig. 3, whereas
the two peaks are barely resolved in the theoretical and sim-
ulated spectra, which indicates that the effect of IPMV is
critical in determining the resolution of the Capon method.

Figure 4 shows color-coded values for the modulus
squared of the IPMV |ρ|2 for various settings of the pair θ1
and θ2 for N = 10; three settings, (θ1, θ2) = (−12◦, 23◦),
(2◦, 19◦), and (5◦, 12◦) are marked by black, red and yel-
low crosses. We see relatively small and large IPMVs for
(θ1, θ2) = (−12◦, 23◦) and (5◦, 12◦), respectively; they ex-
plain the discrepancy seen in the approximated spectra and
also different RMS errors. The IPMV has a quasi-periodic
feature arising from the cyclic mode vectors. For compari-
son, the IPMV |ρ|2 for N = 4 is shown in Fig. 5. We see a
longer period in the variation of the IPMV.

Fig. 4 The modulus squared of IPMV |ρ|2 for various incident-angle
paris θ1 and θ2 (N = 10). Cross symbols indicate the incident angles for
Figs. 1 (black), 2 (red) and 3 (yellow).

Fig. 5 The modulus squared of the IPMV |ρ|2 for various incident-angle
pairs θ1 and θ2 (N = 4).

4. Conclusion

We have derived analytically a Capon spectrum for two un-
correlated incident signals. The derived formula includes an
IPMV corresponding to the incident angles. Its effect was
demonstrated through numerical examples and compared
with simulated Capon spectra. The value of the IPMV was
evaluated for different incident-angle pairs. Although we
analyzed a case with two incident signals, a similar compo-
nent of the mode vectors would have a significant effect in
the general case with more than two signals. The derived
formula helps to provide a clear and intuitive understanding
of the shape of the Capon spectrum.

Acknowledgments

This study was supported in part by JSPS KAKENHI Grants
(No. 19H02155, 15K18077 and 15KK0243), JST PRESTO
Grant Number JPMJPR1873, and JST COI Grant Number



456
IEICE TRANS. COMMUN., VOL.E103–B, NO.4 APRIL 2020

JPMJCE1307. We would like to thank Prof. Toru Sato of the
Institute for Liberal Arts and Sciences, Kyoto University, for
providing valuable advice on this research.

References

[1] J. Capon, “High-resolution frequency-wavenumber spectrum analy-
sis,” Proc. IEEE, vol.57, no.8, pp.1408–1418, Aug. 1969.

[2] P. Stoica, Z. Wang, and J. Li, “Robust Capon beamforming,” IEEE
Signal Process. Lett., vol.10, no.6, pp.172–175, June 2003.

[3] J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming
and diagonal loading,” IEEE Trans. Signal Process., vol.51, no.7,
pp. 1702–1715, July 2003.

[4] A. Hassanien, S. Shahbazpanahi, and A.B. Gershman, “A general-
ized Capon estimator for localization of multiple spread sources,”
IEEE Trans. Signal Process., vol.52, no.1, pp.280–283, Jan. 2004.

[5] J. Li, P. Stoica, and Z. Wang, “Doubly constrained robust Capon
beamformer,” IEEE Trans. Signal Process., vol.52, no.9, pp.2407–
2423, Sept. 2004.

[6] J. Benesty, J. Chen, and Y. Huang, “A generalized MVDR spec-
trum,” IEEE Signal Process. Lett., vol.12, no.12, pp.827–830,
Dec. 2005.

[7] A. Jakobsson, S.R. Alty, and J. Benesty, “Estimating and time-
updating the 2-D coherence spectrum,” IEEE Trans. Signal Process.,
vol.55, no.5, pp.2350–2354, May 2007.

[8] G.-O. Glentis, “A fast algorithm for APES and Capon spectral esti-
mation,” IEEE Trans. Signal Process., vol.56, no.9, pp.4207–4220,
May 2008.

[9] N.R. Butt and A. Jakobsson, “Coherence spectrum estimation from
nonuniformly sampled sequences,” IEEE Signal Process. Lett.,
vol.17, no.4, pp.339–342, April 2010.

[10] P. Lopez-Dekker and J.J. Mallorqui, “Capon- and APES-based
SAR processing: performance and practical considerations,” IEEE
Trans. Geosci. Remote Sens., vol.48, no.5, pp.2388–2402, May
2010.

[11] S.D. Somasundaram, A. Jakobsson, and N.H. Parsons, “Robust and
automatic data-adaptive beamforming for multidimensional arrays,”
IEEE Trans. Geosci. Remote Sens., vol.50, no.11, pp.4642–4656,
Nov. 2012.

[12] H. Bi, B. Zhang, W. Hong, and S. Zhou, “Matrix-completion-based
airborne tomographic SAR inversion under missing data,” IEEE
Geosci. Remote Sens. Lett., vol.12, no.11, pp.2346–2350, Nov.
2015.
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