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Two-Dimensional Imaging of a Pedestrian Using Multiple
Wideband Doppler Interferometers with
Clustering-Based Echo Association

Takuya SAKAMOTO†,††a), Hiroki YAMAZAKI††, Members, and Toru SATO††, Fellow

SUMMARY This paper presents a method of imaging a two-
dimensional section of a walking person using multiple Doppler radar
systems. Although each simple radar system consists of only two re-
ceivers, different radial speeds allow target positions to be separated and
located. The signal received using each antenna is processed employ-
ing time–frequency analysis, which separates targets in the time–range–
velocity space. This process is followed by a direction-of-arrival estima-
tion employing interferometry. The data obtained using the multiple radar
systems are integrated using a clustering algorithm and a target-tracking
algorithm. Through realistic simulations, we demonstrate the remarkable
performance of the proposed imaging method in generating a clear outline
image of a human target in unknown motion.
key words: radar imaging, Doppler radar, target velocity, human body

1. Introduction

The automatic monitoring of people has a wide range of
applications including home health care and safety moni-
toring of workers in harsh environments [1], [2]. An ultra-
wideband (UWB) radar system has remarkable potential for
the robust and reliable monitoring of people, because such
systems, unlike optical cameras, can work in adverse envi-
ronments such as dark, dusty and smoky locations with high
humidity [3]–[6]. In addition, radar imaging does not obtain
any information of texture, thus avoiding privacy concerns.

The ProVision 2 (L-3 Communications, NY) body
scanner, which is one of the commercialized radar imag-
ing systems deployed in many airports, uses approximately
320 receivers, and is too costly to be used at home. The ap-
plications assumed in this paper require a simple and cost-
effective radar imaging system with a small number of re-
ceivers. Lin and Ling [7], [8] developed a Doppler interfer-
ometry imaging system that uses only three receivers. They
separate multiple targets in the frequency domain using their
different radial speeds, which is followed by direction-of-
arrival (DOA) estimation using the phase difference between
receivers. Their system uses continuous waves (CWs) and
thus cannot resolve two targets with the same radial speed
even if they are located apart in the range direction, which
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deteriorates the image quality.
To overcome the above difficulty, Saho et al. [9] applied

the same concept to a UWB radar, so that targets are sep-
arated by their range and radial speed. They successfully
demonstrated the imaging of a walking person using a 26-
GHz radar system. The resultant image obtained using the
method is, however, only a snapshot, in which only part of
the human target is imaged, because radar signals are not
reflected by the whole body at each moment. Therefore, it
is indispensable to use echoes received over multiple snap-
shots; the images obtained over multiple snapshots are inte-
grated to form a whole image of the target by compensating
for the target velocity. Such an imaging method using ve-
locity compensation has been reported in [10], but is only
applicable to simple targets. The greatest challenge in this
processing is the estimation of the velocity vector of each
point in the image, where their radial speeds alone are not
sufficient.

This study employs a UWB radar with two transmit-
ters and four receivers that are placed in an indoor environ-
ment. The multipath effects are exploited to generate a two-
dimensional (2D) sectional shape of the target. To form a
radar image, it is necessary to compensate for the motion
of targets, which requires the estimation of the target ve-
locity vector. Each radar system, however, can only mea-
sure a radial speed. We need to combine the radial speeds
measured using multiple receivers to estimate the velocity
vector. It is thus crucial to associate echoes received using
different receivers, which is not an easy task. In this paper,
we propose a clustering-based algorithm to solve simultane-
ous equations imposed on target velocity vectors, which also
enables association of echoes at the same time. The perfor-
mance of the proposed method is demonstrated by applying
it to simulation data, assuming a person walking in a narrow
passage.

2. System Model

For simplicity, we consider a 2D problem with three tar-
gets, which are horizontal sections of the torso and arms of
the target person. In an actual scenario, this model corre-
sponds to the use of antennas that are horizontally omni-
directional and vertically directive producing a horizontal
fan beam. Figure 1 shows the top view of the 2D section of a
human body and its motion assumed in this study. The torso

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Human body model used in our study. The whole body moves
along a straight line while the torso rotates periodically, and arms swing
synchronized with the torso rotation.

and arms are modeled as an ellipse and circles, respectively.
The sizes of the torso and arms are included in the figure.
This model is a two-dimensional version of the Thalmann
model [11], which is a global numerical model of a walking
human that includes a wide range of walking patterns and
physiques. The model is widely used for numerical simula-
tions of a human body [12].

Figure 2 shows a scenario in which a person walks
along a narrow passage. The x–y coordinate system has its
origin at interferometer 1, and x and y are in the horizon-
tal and vertical directions in the figure. Interferometer 2 is
4.0 m apart from the interferometer 1, and both interferom-
eters are on the center line between the walls. The person
walks towards the bottom of the figure at an average speed of
1.32 m/s, with both arms swinging in a cycle lasting 1.41 s.
The initial position of the torso at t = 0 is 0.3 m apart from
the center line of the passage, and 3.2 m from the x-axis. The
whole body moves uniformly at the same speed, while arms
swing relatively to the torso. The torso rotates periodically
while moving along a straight line, which is synchronized
with the arm swings. The torso angle θt is modeled as a si-
nusoidal function θt(T ) = θt0 sin(ωhT ), where T is a slow
time, θt0 = 10◦ and ωh = 2π/1.41 rad/s.

Figure 3 presents the walking human body model used
in this study, with the outline of the torso and arms in black,
the long axis of the torso in red, and the arms associated
with the torso shown by blue dashed lines. This model de-
scribes a person walking towards the bottom of the figure.
Interferometer 1 is shown as a black square at the origin.

Using two transmitters and four receivers, we construct
two interferometers consisting of a transmitter and two re-
ceivers closely located. The two receivers in each pair are
5.0 mm apart in the x direction, corresponding to approxi-
mately half a wavelength, and the transmitter is located in
the middle. The phase difference between the two receivers
is detected to determine the DOA. We also exploit the mul-
tipath effect with a single reflection on a wall. In fact, there
are many multipath propagation paths involving more than

Fig. 2 Indoor scenario assumed in this study, where a person walking
along a corridor is modeled.

Fig. 3 Schematic of the walking human model (drawn every 250 ms),
with the outlines of the torso and arms in black, the long axis of the torso
in red, and the arms associated with the torso shown by blue dashed lines.
Interferometer 1 is shown as a black square.

one reflection on a wall as discussed in Sect. 7.
In our simulation, received signals are generated using

the ray-tracing model detailed below. The simulation does
not consider waveform distortion but considers the signal
delay, phase shift, shadowing and attenuation depending on
the radar cross-section (RCS) of the target and the propaga-
tion path length. The approximation is valid in this study
because we assume a relatively narrow fractional bandwidth
of 3%. The transmitted signal has a center frequency f0, an-
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Fig. 4 Echoes from a walking person received using interferometer 1 (in
dB).

gular frequency ω0 = 2π f0 and pulse envelope p(t), where t
is a fast time. The echo s(t) from a single target after propa-
gating distance l is then

s(t) = αp(t − 2l/c)ej(ω0+ωd)(t−2l/c), (1)

where α is the signal amplitude depending on the RCS and
propagation path length, p(t)ejω0t is the transmitted wave-
form, and ωd is the Doppler angular frequency calculated as
ωd = 4πvd f0/c, with vd being the radial speed of the target,
and c is the speed of light. Considering a typical walking
speed of 1.0 m/s, a microwave carrier of f0 = 26.4 GHz, and
a pulse width of 2.0 ns, we obtain ωd = 2π × 176 Hz, which
is much smaller than ω0 = 2π × 26.4 GHz considering the
pulse width of 2 ns. Consequently, ωd can be reasonably
ignored without affecting the results. Note that the Doppler
effect exploited in this paper is the phase shift over a pulse-
to-pulse interval that is long enough to detect the phase shift.

The received signal from N targets can be expressed as

s(t) =
N∑

n=1

αn p(t − 2ln/c)ejω0(t−2ln/c), (2)

where αn is the coefficient of the n-th echo, determined by
the RCS of the n-th target and propagation path. In this pa-
per, we employ a free-space approximation in calculating
αn. We simplify the shadowing effect by setting αn = 0 if
the propagation path is blocked by an obstacle. Here, αn

and ln are functions of a slow time T . In particular, the T -
dependency of ln is used to separate multiple targets. The
received signal is denoted s(T, t), explicitly showing the de-
pendency on the slow time T . Figure 4 shows the simulated
time-range signal received using one of the antennas of in-
terferometer 1. The fast time t is displayed as a correspond-
ing range r = ct/2. For 0.8s < t < 1.4 s, the left arm is
masked by the shadowing effect, resulting in a signal with
less interference fluctuation.

3. Doppler Interferometry and Imaging

UWB Doppler interferometry [9] separates multiple echoes

Fig. 5 Spectrogram calculated using the STFT from the echoes shown in
Fig. 4 with a window width of 128 ms (in dB). Micro-Doppler components
generated by the motion of arms are seen.

in the frequency domain and estimates their positions using
the phase difference of receivers. If different scattering cen-
ters have different radial speeds, they can be separated in
a time-frequency analysis employing, for example, a short-
time Fourier transform (STFT).

After applying the STFT to data s1(T, t) and s2(T, t) re-
ceived by receivers 1 and 2, respectively, we obtain a spec-
trogram S k(T, ω, t) k ∈ {1, 2} as

S k(T, ω, t) =
∫

sk(T ′, t)w(T ′ − T )ejωT ′dT ′, (3)

where w(T ) is a window function and specifically a Gaus-
sian function in this study. Figure 5 shows the spectro-
gram obtained by applying the STFT to the signals shown
in Fig. 4. We can observe three trajectories corresponding
to the torso and arms. The simulation takes into account
shadowing effects, and thus part of the signal is blocked de-
pending on the relative position of the targets and antennas.
For 0.8 s < t < 1.4 s, the left arm is blocked and invisible.

Next, we detect the dominant time-frequency peak
points (Ti, ωi, ti) (i = 1, · · · , I) for each T that satisfies

∂ |S k(T, ω, t)|2 /∂ω
∣∣∣
T=Ti,ω=ωi,t=ti

= 0,

∂ |S k(T, ω, t)|2 /∂t
∣∣∣
T=Ti,ω=ωi,t=ti

= 0
(4)

and

∂2 |S k(T, ω, t)|2 /∂ω2
∣∣∣
T=Ti,ω=ωi,t=ti

< 0,

∂2 |S k(T, ω, t)|2 /∂t2
∣∣∣
T=Ti,ω=ωi,t=ti

< 0
(5)

with values greater than the threshold

|S k(Ti, ωi, ti)| > θS max
ω
|S k(Ti, ω, ti)|, (6)

where the threshold is proportional to the maximum norm
of the spectrogram for T = Ti and ti = ti. From the phase
difference Δφi = ∠S 1(Ti, ωi, ti) − ∠S 2(Ti, ωi, ti), we can esti-
mate the DOA as

θi = sin−1

(
Δφi

2πd/λ

)
, (7)
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Fig. 6 The image estimated using interferometer 1 and Doppler interfer-
ometry (in dB).

where λ is the wavelength of the center frequency. This
DOA estimation is correctly performed only if two targets
are either located at different range gates, or moving at dif-
ferent radial speeds. Because we know the target range
ri = cti/2, we can estimate the target’s position xi by com-
bining the range ri and angle θi.

Figure 6 shows the image estimated using interfer-
ometer 1 with the Doppler interferometry from the time–
frequency data in Fig. 5. The image was generated by super-
posing multiple image snapshots obtained at different slow
times T over 1.5 s. It is seen that there are three trajectories,
although they are partially blocked by other targets. This im-
age alone, however, does not show the actual target shape,
which will be tackled in the following part of this paper.
The main idea is the use of multiple actual/virtual antennas
available in a multipath environment, which can mitigate the
shadowing effect and allow the estimation of the target ve-
locity vector instead of the radial speed.

The method explained above can be applied to each
of the propagation paths, leading to multiple sets of image
points xm

i for the m-th path (m = 1, · · · ,M). In our simula-
tion, we assume M = 6, corresponding to two paths without
any reflection on a wall and four paths with a single reflec-
tion on a wall. Note that each point xm

i is labeled with a
radial speed vmi that can be used to identify image points be-
longing to the same target, but measured by different paths.

Let u be the actual velocity vector of the target, and
im1
i1

and im2
i2

be the unit radial vectors from the mj-th path
to the i j-th image point for j = 1 and 2, respectively. The
equations

⎧⎪⎪⎨⎪⎪⎩
uTim1

i1
= vm1

i1
and

uTim2
i2
= vm2

i2

(8)

then hold, where ·T is the transpose operator. These simulta-
neous equations have a solution except when im1

i1
and im2

i2
are

parallel. To perform this calculation, however, the image
points i1 and i2 must be correctly associated. If the wrong
pair of points is chosen, the resultant velocity u is incorrect.
When there are multiple echoes from the targets, their corre-
sponding radial speeds differ and depend on the actual target
position and velocity.

To avoid incorrect estimation of the target velocity, we
can add one more condition, using three interferometers in
total to ensure the simultaneous equations have a solution
[13], [14]. We thus have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
uTim1

i1
= vm1

i1
,

uTim2
i2
= vm2

i2
,

uTim3
i3
= vm3

i3
.

(9)

This process suggests that redundancy in the number of in-
terferometers is necessary to avoid erroneous association of
echoes from different targets. In a multipath environment,
the number of actual and virtual antennas becomes large,
and thus, by exploiting the multipath effect, the same prin-
ciple can achieve more stable estimation in associating echo
pairs. This idea is discussed in detail in the following sec-
tion.

4. Proposed Association Algorithm of Echoes Using the
Radial Speed

In our system model, we use up to M = 6 propagation paths,
corresponding to a ray-tracing simulation with a single wall-
reflection. This allows us to obtain a stable solution for
the antenna association problem stated in the previous sec-
tion. However, we should note that not all the actual and
virtual antennas can measure the same target, because of
the shadowing effect. We propose a new method using a
clustering algorithm in the velocity space to obtain the most
likely combination of echoes that satisfy multiple simulta-
neous equations such as Eq. (9).

Let us assume that each of the six paths detects K
echoes from the received signal. We then need to find likely
combinations of echoes out of the MC2K2 combinations.
The proposed method proceeds as follows. First, we calcu-
late the simultaneous equations (Eq. (8)) for all MC2K2 com-
binations to obtain multiple radial speeds. These estimated
velocities are displayed on a 2D velocity space (vx, vy). We
then find clusters of velocity points that have high density,
while leaving other points that are scattered less densely.
In this way, we obtain multiple simultaneous equations that
have the same solution that corresponds to the actual target
velocity.

The k-means method, a well-known clustering algo-
rithm, is not suited to this purpose because it assigns all
data points to one of the resultant clusters [15]. However,
our problem can be solved by finding a few dense clusters
while rejecting false points generated by wrongly associated
echoes.
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Fig. 7 Schematic of the DBSCAN algorithm. Within the D-proximity of
p, there are three nodes including p′ (top). There is only one new node q
within the D-proximity of p′ (middle). However, r is not reachable from
any nodes of the cluster (bottom).

Considering this unique aspect of our problem, we
adopt the density-based spatial clustering of applications
with noise (DBSCAN) [16]. DBSCAN not only sepa-
rates given data points into multiple clusters but also rejects
points that do not form any dense clusters. The actual pro-
cedure of DBSCAN is as follows. First, p, one of the data
points, is randomly selected. Next, N(p), which is a set of
points within D-proximity of p, is calculated. Then, if q
satisfies q ∈ N(p) and |N(p)| ≥ Nmin, q is classified as a
density-reachable point and included in the same cluster as
p. These steps are iteratively repeated until all the density-
reachable points are included in the cluster.

Figure 7 is a schematic showing how DBSCAN works.
In the figure, the point p is an element of a cluster, and we
check if the other points p′, q, and r belong to the same clus-
ter. The point p′ is in the same cluster because it is within
the D-proximity of p. The point q is an element of the same
cluster because it is density-reachable from p via another
point p′. In contrast, r does not belong to the same cluster
because it is not density-reachable from any element of the
cluster. In the figure, the D-proximity of q is shown in the
image at the bottom. As a result, the point r is classified as
a false image generated by a wrongly associated echo pair.

The DBSCAN algorithm is first run in 2D velocity
space vx–vy and secondary clustering is then performed in
3D time–velocity space t–vx–vy. The former 2D clustering
corresponds to solving the simultaneous equations at each
time step independently of other time steps. The latter 3D
clustering uses the continuity of the target velocity over a
short period of time, which is based on the assumption that
a human body does not change speed abruptly. Note that the
2D clustering can reduce the number of data points dramat-
ically, and we can thus accelerate the more time-consuming
3D clustering using only a small number of data points. We
detect a median point among the points in each resultant
cluster. These points are given to the next step for tracking,
which is detailed in the next section.

5. Tracking of Clustered Velocities

The clustering procedures are followed by implementation
of a tracking algorithm using an α–β filter [17], [18] to as-
sociate the data points over time. Let u(τn) be one of the
estimated target velocities in the previous section, where τn

is the n-th discretized slow time T , and Δτ is the slow-time
interval of the discretized slow time. The α–β filter gives the
smoothed velocity us(τn) as

us(τn) = up(τn) + α(u(τn) − up(τn)),
as(τn) = ap(τn) + β(u(τn) − up(τn))/Δτ,
up(τn) = us(τn−1) + Δτas(τn−1),
ap(τn) = as(τn−1),

(10)

where up(τn) is the predicted velocity, and ap(τn) and as(τn)
are the predicted and smoothed accelerations, respectively.

The selection of the points for tracking is determined
as

|u(τn) − up(τn)| ≤ Dv, (11)

where Dv is a threshold value. If there are multiple points
satisfying this condition, the nearest one is chosen. If there
are no points satisfying this condition, u(τn) = up(τn) is as-
sumed. After the tracking process, we compensate for the
motion of each target to form an image corresponding to the
initial position. Finally, we apply an artifact suppression al-
gorithm [13] to remove artifacts from the image.

6. Performance Evaluation of the Proposed Method

The center frequency and bandwidth of the radar system are
26.4 GHz and 500 MHz, the antennas are omni-directional
in the 2D plane assumed in this study, and the sampling fre-
quency for slow time is 1.0 ms. The total observation time
is 1.5 s, but we process the data below only for 0.4 s ≤ t ≤
0.8 s. The width of the window function w(T ) used for STFT
is 128 ms, and the threshold is θS = 0.005. We set the param-
eters for the DBSCAN algorithm as D = 0.1 m/s, Nmin = 5,
Da = 0.4 m/s, Db = 0.1 s, and N′min = 80, where Da and
Db are the major and minor axes of an ellipsoid defining the
proximity in the 3D t–vx–vy space. The signal-to-noise ratio
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Fig. 8 Target velocities estimated from all possible combinations of
paths. The actual target velocities are shown as black circles.

(S/N) is difficult to define because it varies over time, and
depends on the antenna position and target shape. The av-
erage S/N is 27.0 dB, with the average being taken over the
whole observation time, the 12 actual/virtual receivers and
the three targets (torso and arms). Figure 8 shows the target
velocities estimated by solving the simultaneous equation
Eq. (8). We see there are numerous candidate points. In the
figure, black circles are actual target velocities correspond-
ing to the torso and arms.

After applying the DBSCAN algorithm in the 2D vx–
vy space, we obtain the reduced data points shown in Fig. 9.
Employing 2D DBSCAN, many of the data points are classi-
fied as artifacts. However, there are still unnecessary points
included in the figure. Finally, we apply 3D DBSCAN in
t–vx–vy space, exploiting the time continuity of the actual
motion. The resultant data points are shown in Fig. 10.
This example demonstrates that the proposed method can
accurately estimate target velocities using the clustering ap-
proach. However, the instantaneous velocity estimated at
each time sample is not sufficient to compensate for the tar-
get motion that includes acceleration. Therefore, we apply
the α–β filter to the extracted clustered data points, and con-
nect the associated data points over time, and thus estimate
the motion of each target (the torso or one of the arms) that
changes its velocity over time.

We now know the motion of the targets, and can thus
compensate for the motion to back-propagate the estimated
images to the initial position, and thus form an image. Fig-
ures 11 and 12 are respectively the target image estimated
using the proposed method without the 3D DBSCAN al-
gorithm or artifact suppression and with the 3D DBSCAN
algorithm and artifact suppression. In the images, the esti-
mated points are plotted in red, which are superposed with
the actual target outline shown in black. These results show
the importance of the information about the time continu-
ity of the actual target motion. We note that the periodical
rotation of the torso is not estimated or compensated for in
our approach; only the translational motion is compensated
for. Thus, the resultant image suffer from an error gener-

Fig. 9 Output of 2D DBSCAN clustering. Many of the false images are
eliminated. The actual target velocities are shown as black circles.

Fig. 10 Output of 3D DBSCAN clustering. Data points are estimated
correctly. The actual target velocities are shown as black circles.

Fig. 11 Target image estimated without 3D clustering or artifact suppres-
sion (S/N=27.0 dB).

ated by the target rotation. In reality, however, the rotational
angle of a torso is not important, and the image generated
using the proposed method presents the target shape accu-
rately enough in practice.

The root-mean-square (RMS) error in estimating the
target shape is 5.2 mm, where the error εi is defined as the
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Fig. 12 Target image estimated using the proposed method (S/N=27.0 dB).

distance between each image point xi and the point on the
target outline that is closest to the image point; i.e.,

εi = minq |xi − q|
subject to q ∈ B,

(12)

where B is the boundary of the target shape including the
torso and arms. The image coverage ratio of 30.2% is
the percentage of the target outline covered by the group
of estimated image points. The image shown in Fig. 12
clearly shows the outline of the 2D section of the human
body, which demonstrates the effectiveness of the proposed
method.

It should be noted that the image in Fig. 12 is not an
image produced from a single snapshot signal measured at a
particular time, but instead, is generated by combining mul-
tiple images produced using data snapshots over a certain
period 0.4 s ≤ t ≤ 0.8 s. We compensate for motions of the
targets (torso and arms), estimated through clustering and
tracking processes in the proposed method, to combine mul-
tiple snapshots to produce the image. For this reason, even
the left arm is correctly imaged in Fig. 12, whereas part of
the left arm trajectory is missing in Fig. 6 due to a shadow-
ing effect.

For comparison, we apply a conventional delay-and-
sum (DAS) migration to the same dataset processed above,
to obtain the image shown in Fig. 13. The image is nor-
malized to the maximum value (0 dB), and the actual tar-
get outline is shown in white. Because the DAS migration
assumes that the target is stationary, the obtained image is
calculated from a single data snapshot measured at t = 0.
This method does not exploit Doppler information, but only
the delay through six different propagation paths. Although
the image shows approximate location of the set of targets,
the resolution is not sufficient to resolve the target shape.
This result demonstrates the effectiveness of the proposed
method, which can estimate a clear target shape from lim-
ited data. This result is not possible with a conventional
imaging methods.

Figure 14 shows the RMS error in imaging using the
proposed method for various S/N values. The error is aver-
aged over 50 realizations for each S/N value. When S/N is

Fig. 13 Target image estimated using the DAS migration (in decibels).
The actual target outline is shown in white.

Fig. 14 RMS error in imaging using the proposed method.

higher than 20 dB, the RMS error is below 10.0 mm, which
is sufficiently accurate in practice to depict the outline of a
human body.

7. Discussion

7.1 Human Model

In this study, we adopted the numerical human model intro-
duced in Sect. 2 with a set of fixed parameters. Although this
model exemplifies a typical walking human motion, there
are numerous different walking patterns and body sizes.
Therefore, it is imperative for future studies to assess the
performance of the proposed method with various human
motion and size parameters.

7.2 Multipath Model

Although we considered a multipath model only with a sin-
gle wall reflection above, the actual signals contain multi-
path echoes involving more than one wall reflection. When
assuming a multipath with R wall reflections, the total num-
ber of propagation paths is M = 4R + 2. This affects
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the number of possible combinations of echoes MC2K2 as
stated in Sect. 4. Because the computational complexity of
DBSCAN clustering CDBSCAN is proportional to the num-
ber of possible combinations MC2K2, this readily leads to
CDBSCAN ∝ (4R + 2)(4R + 1) ∼ O(R2), where O denotes big
O notation. This result indicates that the clustering process
in the proposed method has order R2 time complexity.

However, it should be noted that a multipath echo with
a large R has a large delay, and can be suppressed by range-
gating when using a UWB signal. Furthermore, because the
signal intensity of a multipath echo decays exponentially for
a large R, the number of multipath echoes to be processed is
limited. For these reasons, we can prevent the computational
complexity from increasing in practice. Nonetheless, it will
be important to clarify the conditions required for applica-
tion of the proposed method by considering the multipath
environment and the computational complexity.

7.3 Waveform Model

A UWB signal is defined as a signal with a fractional band-
width larger than 20% or a bandwidth wider than 500 MHz
by the Federal Communications Commission. Although we
assumed UWB pulse radar with a bandwidth of 500 MHz in
the paper, as long as near-field ranging can be performed,
any radar signals can be used equally as well. Possible can-
didates are impulse radio signals, wideband chirp signals,
wideband FM-CW signals, and wideband code modulated
signals.

The assumed bandwidth (500 MHz) corresponds to a
range resolution of 30 cm, which is actually not high enough
to resolve body parts (e.g., torso and limbs) of the same
person. Therefore, separation of body parts is performed
mainly using their different Doppler velocities. However, if
the proposed method is applied to a scenario in which mul-
tiple people are present, the use of UWB signals remark-
ably simplifies signal processing, as simply applying range-
gating suppresses echoes from other people.

8. Conclusion

We proposed a new UWB radar-imaging algorithm using
two Doppler interferometers in a multi-path environment.
The multipath effect provides redundant propagation paths,
which allows detection of the most probable combination
of echoes. We adopted a DBSCAN clustering algorithm to
find densely clustered data points, leading to successful es-
timation of the target motion. The estimated target motion
was compensated for to obtain the target image. The result
indicates the effectiveness of the proposed method in imag-
ing a realistic target model, simulating a walking person.
An important future task is to apply the proposed method to
measurement data for an actual human body to demonstrate
the performance of the method.
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