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SUMMARY Environment measurement is an important issue for var-
ious applications including household robots. Pulse radars are promising
candidates in a near future. Estimating target shapes using waveform data,
which we obtain by scanning an omni-directional antenna, is known as one
of ill-posed inverse problems. Parametric methods such as Model-fitting
method have problems concerning calculation time and stability. We pro-
pose a non-parametric algorithm for high-resolution estimation of target
shapes in order to solve the problems of parametric algorithms.
key words: pulse radar, non-parametric estimation, shape estimation, ill-
posed inverse problem, boundary scattering transform

1. Introduction

Environment measurement is an important issue for vari-
ous applications including household robots. Pulse radar
systems are promising candidates for environment measure-
ment in a near future. FCC (Federal Communications Com-
mission) has recently set a standard for ultra-wide-band
(UWB) technologies. UWB pulse radars are attractive for
this purpose.

Estimating target shapes using data received by a
scanned omni-directional antenna is known as one of ill-
posed inverse problems. Many kinds of imaging algorithms
have been proposed [1]–[18]. Model fitting method is one of
effective approaches for this problem [1], [2]. In the model
fitting method, target shapes are expressed with parameters,
and the parameters are updated to minimize the difference
between the observed data and the estimated data. Model
fitting method works well to some extent, but they have
problems concerning calculation time and stability [3], [4].
Imaging algorithms based on domain integral equation is an-
other parametric approach [5]–[13]. In their algorithm, tar-
gets and media were modeled as grids of permittivity. They
solved domain integral equation by means of many kinds of
optimization algorithms such as genetic algorithms. How-
ever, they assume that antenna scans around target, which
is not realistic for our applications. Diffraction tomogra-
phy is known as one of algorithms for radar imaging [14].
However, they also need to scan antenna at many locations
around targets.

On the other hand, some non-parametric algorithms
have been proposed. An estimation method of direction of
arrival (DOA) based on focussing matrices has been pro-
posed [15], [16]. Their algorithm deals with wide-band sig-
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nals. However, they assume independent sources and plane
waves, which are not valid for our problem. Furthermore,
their purpose is to estimate only DOA, which is not suffi-
cient. A source localization algorithm based on maximum-
likelihood criterion has been proposed [17]. Their algorithm
assumed near-field targets and wide-band signals. However,
the locationing algorithm of point sources is not sufficient
to target shape estimation. SRDI (Single-Range Doppler In-
terferometry) algorithm estimates space-debris rotating with
single-range data for doppler radar systems [18]. SRDI as-
sumes rotating targets, therefore it can not be applicable to
our purpose. The conventional non-parametric algorithms
have problems of unrealistic assumptions and insufficient
performance for shape estimation.

We show the existence of a reversible transform be-
tween delay time and target shape in this paper. We call the
transform IBST (Inverse Boundary Scattering Transform).
We propose a non-parametric high-resolution shape estima-
tion algorithm based on IBST. For the kind of problem dealt
with in this paper, migration algorithms are well-known es-
pecially in the field of a seismic prospecting [19]. Migra-
tion algorithms are applicable for general media and targets,
but their resolutions are limited to the order of the signal
wavelength. The proposed algorithm using IBST has an
advantage that it can uniquely and directly estimate target
boundary shapes as lines, although IBST requires targets
surrounded by smooth boundaries, uniform media and di-
rectly scattered waves.

Firstly, we prove the existence of a reversible transform
between delay time and target shape in this paper. Next, we
clarify problems in applying IBST to real data. We propose
a selection algorithm and a false image reduction algorithm
to solve the problems. Moreover, we propose an edge de-
tection algorithm using IBST. Finally, we show application
examples of IBST using a numerical experiment, and inves-
tigate the performance of the proposed algorithm.

2. System Model

We assume a mono-static radar system in this paper. An
omni-directional antenna is scanned along a straight line.
UWB pulses are transmitted at a fixed interval and received
by the antenna. The received data is input into A/D con-
verter, and stored into a memory. We estimate target shapes
using the data.

We deal with a 2-dimensional problem, and TE-mode
wave. Targets and the antenna are located on a plane. We
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Fig. 1 Outline of the proposed algorithm.

define r-space as the real space, where targets and the an-
tenna are located. If a set is expressed in r-space, we call
it the expression in r-domain. We express r-space with the
parameter (x, y). Both x and y are normalized by λ, which is
the center wavelength of the transmitted pulse in a vacuum.
We assume y > 0 for simplicity. The antenna is scanned
along x-axis in r-space. We define s′(X, Y) as the received
electric field at the antenna location (x, y) = (X, 0), where we
define Y with time t and speed of the light c as Y = ct/(2λ).
We set t = 0 to the time which maximizes the instantaneous
envelope of electric field at the location of the antenna. We
apply a matched filter of transmitted waveform to s′(X, Y).
We define s(X, Y) as the output of the filter. We define d-
space as the space expressed by (X, Y). If a set is expressed
in d-space, we call it an expression in d-domain. We nor-
malize X and Y by λ and the center period of transmitted
waveform, respectively.

We propose a non-parametric high-resolution estima-
tion algorithm of target shape using the data s(X, Y). Firstly,
we extract quasi wavefronts, which is delay times of direct
scattered waves. Next, we obtain approximate estimation
of target shapes by applying IBST to the extracted quasi
wavefronts. We then apply a selection algorithm and a false
image reduction algorithm to the data by using evaluation
value of target boundary based on the locations and shapes
of targets. Finally, we estimate the target shapes and the
edge-point locations. Figure 1 illustrates the outline of the
algorithm we propose in this paper.

3. Boundary Scattering Transform and Its Inverse
Transform

3.1 Boundary Scattering Transform

We prove the existence of a reversible transform between
quasi wavefronts and target boundary surfaces in this sec-
tion. Although we deal with a 2-dimensional problem, the
algorithm can be easily extended to a 3-dimensional one.
Additionally, we assume scanning of the antenna along a
straight line, but it can be easily extended to scans along any
curves.

We assume that each target has a uniform complex per-
mittivity, and surrounded by a smooth boundary. The target
complex permittivity of the target ε(x, y) satisfies

|∇ε(x, y)|2 =
∑
q∈H

aqδ(y − gq(x)), (1)

Fig. 2 The coordinates and an example of a target complex permittivity.

where δ is Dirac’s delta function, and gq(x) is a differentiable
single-valued function. We define

q = {(x, y)|y = gq(x), x ∈ Jq} ∈ H, (2)

where Jq is the domain of gq(x), aq is a positive real constant
which depend on q ∈ H, and H is the set of all q. We define
target boundary surfaces as elements of H. Figure 2 illus-
trates the coordinates and an example of a target complex
permittivity ε(x, y) in r-space. The assumption of the tar-
get model in Eq. (1) is general because it includes the case
where the target complex permittivity is divided into some
areas as in Fig. 2.

Next, we define several sets in order to explain Bound-
ary scattering transform. We define P, which is a subset of
d-space, as

P = {(X, Y) |∂s(X, Y)/∂Y = 0, |s(X, Y)| ≥ Ts } , (3)

where Ts is a threshold to prevent picking up noise values.
Next, we connect the points close to each other in P.

We obtain lines from P in this way. We express each line as
p, which we call a quasi wavefront. We define G as the set
of all p ∈ P.

Here, we assume that the medium of direct path is vac-
uum, but the following argument is valid for any uniform
media only if the propagation speed of the wave is known.
We assume p corresponds to the direct scattered wave of q.
By utilizing the relationship between the antenna location
and the length of perpendicular line to q from the antenna
location, the point (X, Y) on p is expressed as

X = x + ydy/dx

Y = y

√
1 + (dy/dx)2,

(4)

where (x, y) is a point on q, and we assume y > 0 and Y > 0.
We define the transform in Eq. (4) as Boundary Scattering
Transform (BST).

Figure 3 shows an example of BST. The upper fig-
ure shows the target boundary surface in r-domain, and
the lower figure is the corresponding quasi wavefront in d-
domain, which is the BST of the upper figure. In general,
some quasi wavefronts are generated from one target bound-
ary surface by BST as in the figure.

3.2 Inverse Boundary Scattering Transform

If an inverse transform of BST exists, we can estimate target
shapes using the transform. In this subsection, we prove the
existence of the inverse transform of BST.
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Fig. 3 An example of boundary scattering transform.

IBST is based on a back projection process. When
there is a reflection at (X, Y) in d-space, the target is on a
circle C(x, y; X, Y) of its center (X, 0) and its radius of Y in
r-space. If a reflection forms a curve p, point (X, Y)’s on p
produce a group of circles in r-space. The envelope of the
group of circles must draw its target shape. This process
is formulated as follows. Firstly, we express the circle for
given (X, Y) using a point (xc, yc) on it. We define a group
of circles C(xc, yc; X, Y) as

C(xc, yc; X, Y)

= {(xc, yc) |yc > 0, FC(xc, yc; X, Y) = 0 } , (5)

where FC(xc, yc; X, Y) is expressed as

FC(xc, yc; X, Y) = (xc − X)2 + y2
c − Y2. (6)

Next, we express the envelope of the group of circles
C(xc, yc; X, Y) using a point (xe, ye) on it. We define EC as
the envelope of the group of circles C(xc, yc; X, Y). EC sat-
isfies

EC(xe, ye; X, Y)

= {(xe, ye) |ye > 0, FC(xe, ye; X, Y) = 0,

∂FC(xe, ye; X, Y)/∂X = 0} . (7)

Here, the partial derivative means the derivative independent
only of xe and ye, not of Y . Here, we should note that Y
is uniquely determined by X with a certain function. The

equation of EC is expressed as{
xe = X − YdY/dX

ye = Y
√

1 − (dY/dX)2.
(8)

We have to check if Eq. (8) works as an inverse transform of
BST expressed in Eq. (4). Substituting Eq. (4) to Eq. (8), we
obtain

y2
e − y2 + (xe − x)2 − 2(xe − x)ydy/dx = 0. (9)

Equation (9) holds for any function gq(x), for any x. There-
fore, we conclude that x = xe, y = ye. This means that
Eq. (8) satisfies the condition of an inverse transform of
BST. As a result, we conclude that the inverse transform of
BST is given by{

x = X − YdY/dX

y = Y
√

1 − (dY/dX)2.
(10)

We define the transform in Eq. (10) as Inverse Boundary
Scattering Transform (IBST). The existence of the inverse
transform is very meaningful because it can be used for a
direct and unique estimation of target boundary shapes. The
estimated target boundaries are expressed as not an image
but lines. This is the advantage and the characteristic of our
algorithm.

The condition of existence of IBST is differentiability
of the quasi wavefront and

|dY/dX| ≤ 1. (11)

This inequality in Eq. (11) is required because if it is not sat-
isfied, the value of y obtained using IBST in Eq. (10) is not a
real number, which is not rational. In a situation of Fig. 2, a
target perpendicular to x-axis produces a straight line of its
inclination of 45 degrees in d-space. We assume that we can
receive the directly scattered waves from the target bound-
ary. However, if this condition is not satisfied, the estimation
accuracies are degraded. Plural quasi wavefronts are gener-
ated from one target boundary surface by BST in general.
However, if we find out all quasi wavefronts from the re-
ceived data, it is possible to reconstruct the target boundary
surfaces using IBST. Therefore, the plural quasi wavefronts
generation has no problem in our algorithm.

3.3 Edge Refraction Waves and Boundary Scattering
Transform

We have shown that the relationship between quasi wave-
fronts and target boundary surfaces is expressed as BST and
IBST if the complex permittivity satisfies the condition in
Eq. (1). If IBST is applicable not only for reflection but also
for refraction, we see that IBST has a great deal of applica-
tion range. In this subsection, we investigate the relationship
between edge refraction waves and IBST.

If an edge point of a target is located at (α, β), the delay
time of received signal is expressed as a hyperbola as

Y =
√

(X − α)2 + β2. (12)
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The IBST of Eq. (12) is [x, y]T = [α, β]T, where T means
transpose. BST of the edge point is not defined because the
differentiability condition is not satisfied in this case. How-
ever, it is possible to estimate the edge point location us-
ing IBST. Substituting the hyperbola in Eq. (12) to BST in
Eq. (4), we obtain the differential equation expressed as

dy/dx = (y2 − x2 − β2)/2xy, (13)

where we assume α = 0 because α works only as a parallel
translation of x. If the solution of Eq. (13) draws a certain
curve, it brings a trouble in applying IBST, because it means
that a target boundary surface exists which has the same
quasi wavefront of an edge point. Therefore, it is impor-
tant to investigate a differential equation of Eq. (13), which
is one of Bernoulli-Riccati differential equations. Consider-
ing y ≥ 0, the general solution of the equation is expressed
as

y =

√
β2 − x2 −Cx, (14)

where C is an integral constant. The BST of Eq. (14) is ex-
pressed as

[X, Y]T =

[
−C/2,

√
C2/4 + β2

]T
. (15)

The solution of the differential equation expresses a circle
with a radius

√
β2 + C2/4, and center [−C/2, 0]T. The BST

of Eq. (15) shrinks to a point on the hyperbola in Eq. (12).
The differential of a point is not defined, therefore it has no
problem in applying IBST to data.

Consequently, IBST is applicable to both of reflection
waves and refraction waves. IBST precisely estimates target
boundary surfaces and edge point locations if an antenna can
receive the directly scattered waves from the target bound-
ary. We propose the algorithm using IBST in this paper, and
show an example of application of IBST in the following
sections.

4. Quasi Wavefront Extraction from Received Data

4.1 Extraction of Quasi Wavefront

In this section, we describe the method of extraction of quasi
wavefronts. We have already defined the set P. The proce-
dure of extraction of P is easy because all we should do is
to check the derivative of given data. Next, we go on to the
procedure of extracting p ∈ G from P. In an actual pro-
cedure, we sequentially connect the points in P which sat-
isfy a required condition. p ⊂ P are connected closed sets.
The i-th set pi is determined as follows. The first element
of pi is an arbitrary element of P which is not included in
p1, p2, · · · , pi−1. The domain Ii for pi is set to X of the first
element. The second element of pi is chosen from P which
satisfies |dY/dX| ≤ 1 in Eq. (11). Here, Y should have only
one value for the same X. Then, domain Ii is updated ac-
cording to the newly chosen element. In this way, we ex-
pand the set pi until there is no other element which can be

included into pi. Finally, the extracted pi has a characteristic
as

pi = {(X, Y)|Y = fi(X), |d fi(X)/dX| ≤ 1, X ∈ Ii}, (16)

where fi(X) is a single-valued function whose domain is
Ii. Eq. (16) means that a unique Y has to exist satisfying
(X, Y) ∈ pi for any X ∈ Ii. The algorithm described in the
next subsection removes the undesirable links generated in
this procedure.

4.2 Evaluation of Quasi Wavefront

As mentioned in the previous section, p ∈ G denote quasi
wavefronts which correspond to direct scattered waves from
targets. Simply extracted quasi wavefronts include false
quasi wavefronts generated by noises, ringing of waveforms,
and multiple scattering. It is important to remove these false
quasi wavefronts.

We define an evaluation value wi for pi ∈ G as

wi =

∣∣∣∣∣∣
∫

X∈Ii

s(X, fi(X))dX

∣∣∣∣∣∣
2

. (17)

wi becomes large when both of the amplitude of the signal
along the quasi wavefront, and the width of the domain of
fi(X) are large. If both of positive and negative points exist
in a quasi wavefront, the evaluation value becomes small.
This characteristic is valid because quasi wavefront should
be constructed by connecting points with same phases. Fig-
ure 4 illustrates the reason why we adopt the integration of
the signal amplitude as an evaluation value. If we adopt the
integration of the signal power as an evaluation value, unde-
sirable quasi wavefronts are extracted as shown in the right
panel of Fig. 4.

We can remove false quasi wavefronts caused by noises
and ringing of waveforms by utilizing the evaluation value
wi for most cases. However, the evaluation value for a false
quasi wavefront becomes large when the false quasi wave-
front is close to real quasi wavefronts. In this case, the eval-
uation value in Eq. (17) is not sufficient. In order to solve
this problem, we propose the following algorithm which al-
lows us to subdivide the regions. The procedure described in
Sec. 4.1 does not exclude situations that p1∩ p2 � φ(nullset)
for p1, p2 ∈ G, p1 � p2 as shown in Fig. 5. In such
a case we subdivide the quasi wavefront so that the two
sets contain only one element in common. In the figure,
p1 = {a, b, e, f , g} and p2 = {a, b, c, d}. In this case, we di-
vide the quasi wavefront as p1 → p′1 if wp1 ≤ wp2 . Note that
p′1 has lower evaluation value than p1. If wp1 ≥ wp2 holds,

Fig. 4 Amplitude and quasi wavefronts.
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Fig. 5 Outline of division algorithm for quasi wavefronts.

Fig. 6 The target boundary surface used for the application example.

Fig. 7 BST of the target boundary surface in Fig. 6.

we divide p2 as p2 → p′2. Here, p′1∪ p2 = p1∪ p′2 = p1∪ p2,
p′1 ∩ p2 = p1 ∩ p′2 and |p′1 ∩ p2| = |p1 ∩ p′2| = 1 are satisfied,
where |p| represents the number of elements of the set p. In
Fig. 5, p′1 ∩ p2 = p1 ∩ p′2 = {b}. After this subdivision, we
can remove regions with small wi by recalculating wi.

4.3 An Example of Application of Quasi Wavefronts
Extraction

We show an example of application of the extraction algo-
rithm of quasi wavefront, which we explained in the previ-
ous subsection. Figure 6 shows an example of target bound-
ary surface. The upper domain in the figure is filled with
perfect electric conductor, and the lower domain is filled
with air. The symbols located at the bottom of the figure
show the locations of the antenna, where we receive signals.
Figure 7 shows the BST of the target in Fig. 6. We calcu-
late refraction waves from the edge points in another way,
because we can not derive it using BST. In the figure, plu-

Fig. 8 An example of received signal s(X,Y).

Fig. 9 Extraction of set P from data s(X,Y).

Fig. 10 Extraction of quasi wavefront p ∈ G from data s(X,Y).

ral quasi wavefronts are generated. Extraction of these true
quasi wavefronts enable us to estimate the target shape using
IBST.

Figure 8 shows the received data from the target shown
in Fig. 6, which we obtain by utilizing FDTD (Finite Differ-
ence Time Domain) method. We receive the signal at the 40
locations illustrated in Fig. 6, whose intervals are 0.0125λ.
Here, we assume a noiseless case. There is a false quasi
wavefront caused by multiple scattering in the figure. Ex-
cept for it, other quasi wavefronts are approximately same
in Fig. 7. Figure 9 shows a set P extracted from the signal
in Fig. 8. We select the points in d-domain where the dif-
ferential of the waveform is equal to zero. Here, we remove
points with small power by a ranking algorithm. Numerous
undesired points exist in P due to the ringing of the wave-
form. Figure 10 shows ∪p∈G p, which is the set of all quasi
wavefronts p extracted from the received signal. As men-
tioned above, quasi wavefronts p ∈ P satisfies |dY/dX| ≤ 1,
which is the condition of existence of IBST.

Our algorithm extract quasi wavefronts at large, and
they include a part of edge refraction wave shown in Fig. 7,
because we utilize a ranking algorithm in extraction of P.
On the other hand, undesired quasi wavefronts and multi-
ple scattering waves also appear. We apply the quasi wave-
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Fig. 11 Selection of quasi wavefronts using evaluation values.

front division algorithm to p ∈ G based on the evaluation
values as explained in the previous subsection, and then we
recalculate the evaluation values for updated quasi wave-
fronts. Next, we select the quasi wavefront whose evalua-
tion value is greater than −n dB of the maximum evaluation
value. Figure 11 shows the updated and selected quasi wave-
fronts, where an empirically chosen value of n = 10 is used.
The proposed algorithm above extracts 4 quasi wavefronts
from the received signal. These are approximately equal to
the real quasi wavefronts in Fig. 7 except for the false quasi
wavefront caused by the multiple scattering. Although the
proposed algorithm extract only a part of the edge refrac-
tion quasi wavefronts, it is sufficient for locationing of edge
points.

5. False Image Reduction for Multiple Scattering and
Edge Point Locationing

5.1 An Example of Application of IBST

Here, we show an example of the application of IBST. We
apply IBST to the quasi wavefronts in Fig. 11. We utilize a
smoothing algorithm with B-spline function in order to ob-
tain the differential of a quasi wavefront. Figure 12 shows
a result of IBST application. The solid line and the broken
line in the figure are the real target boundary surface and
the estimated target boundary surface respectively. The tar-
get shape is estimated by IBST in the figure. However, a
false image appears above the real target. This is caused
by the multiple scattering, and it is difficult to remove the
false image in the algorithm of quasi wavefront extraction
as described above.

5.2 False Image Reduction Algorithm for Multiple Scat-
tering

In this subsection, we propose an algorithm which removes
the false image caused by multiple scattering. We see that
the false image is behind the true target boundary from the
antenna position. We can remove the false image by using
this nature. Firstly, we assume a segment between a point of
an estimated target boundary and the antenna position where
we receive the directly scattered waveform from the point.
If other estimated target boundaries exist near the segment,
the reliability of the estimated target boundary is reduced
because the received power from the point is reduced by the

Fig. 12 An example of application of IBST.

obstacle target between the target and the antenna. There-
fore, we reduce the evaluation value for the target boundary
in that case. We also utilize the evaluation value of the obsta-
cle targets for the penalty value. We formulate this process
as follows.

We define a domain Fp using X satisfying (X, Y) ∈ p
and x, y satisfying (x, y) ∈ B−1[p] as

Fp =

{
(x0, y0)

∣∣∣∣∣
√

(x − x0)2 + (y − y0)2

+

√
(X − x0)2 + y2

0 −
√

(x − X)2 + y2 < 1/2

}
,

(18)

which is known as the 1st Fresnel zone. Here, we define B
as the BST operator. We propose an algorithm which update
the evaluation value wi to the new evaluation value Wi as

Wi = wi −
∑

pj�pi∈G
wpj Rpj ,pi (19)

where Rr,p means the ratio of the length of a quasi wavefront
r whose BST is within Fp to the total length of r. The 2nd
term of the right hand side of Eq. (19) means the penalty
value for the evaluation value. The evaluation value Wi be-
comes small when other targets are in its 1st Fresnel zone.
We utilize not a segment but 1st Fresnel zone for the algo-
rithm because any other objects in the 1st Fresnel zone may
significantly reduce the power of the received signal. Fig-
ure 13 shows the estimated target boundary surfaces using
the new evaluation value Wi. The solid line and the bro-
ken lines are the real target boundary surface and the esti-
mated target boundary surfaces, respectively. Here, we se-
lect the target boundary surface whose evaluation value is
larger than −n dB of the maximum evaluation value. Here
we use an empirically chosen value of n = 10. The pro-
posed algorithm successfully removes the false image of the
boundary surface. The degradation of the estimation accu-
racy on the concave surface compared to the straight sur-
face is caused by the difference between the observed wave-
form and the reference waveform for the matched filter. The
target shape estimation accuracy is approximately 0.1 λ at
most.
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Fig. 13 The estimated target shape by false image reduction algorithm.

Fig. 14 The target boundary surfaces sampled at non-equi-interval and
the detected edge points.

5.3 Edge Point Locationing Algorithm

We obtain the target boundary surface sampled at non-equi-
intervals if we apply IBST to the quasi wavefronts sampled
at equi-interval of X in d-domain. Figure 14 shows an ex-
ample of the target boundary surface sampled at non-equi-
interval. The solid line is the real target boundary surface,
and the cross symbols are the target boundary surfaces. It
is possible to detect edge points using IBST because IBST
concentrates a quasi wavefront from an edge point to a sin-
gle point. We propose an edge point locationing algorithm
as follows.

Firstly, we count the number of the points within the
circle with a radius d and the center which is equal to each
point of an estimated boundary. We call the number of the
points the evaluation value for the point. Then, we search
the point which maximizes the evaluation value. The found
point is considered as an edge point. Next, we search the
same way on the condition that the search area is limited to
the field which is not within the circles with a radius d and
the center which is equal to the found edges so far. This
procedure is repeated. We adopt the detected edge points
whose evaluation values are larger than −n dB of the maxi-

Fig. 15 An application example of IBST for a target boundary with an
obstacle cylinder.

mum evaluation value.
We apply the algorithm for edge points detection men-

tioned above. Here we use an empirically chosen parameters
of d = 0.2λ, and n = 10. The two circle symbols in Fig. 14
show the detected edge points. The both edge locations are
estimated accurately.

5.4 The Application Limitation of IBST

In this subsection, we examine the application limitation of
IBST. Firstly, we consider a case that we do not obtain a di-
rectly scattered wave from a part of target. We show an ap-
plication example of IBST for a curved target with a cylinder
in its foreground. In Fig. 15 the solid line and the broken line
show the true boundary and the estimated boundary, respec-
tively. We see in the figure that IBST cannot reconstruct the
part of the target behind the other object. Additionally, the
upper part of the cylinder is not estimated either. In this way,
the part of targets without directly scattered wave cannot be
estimated by our algorithm.

Next, we explain another limitation of IBST. If the tar-
get is a circle whose center is on the scanning line of the an-
tenna, the directly scattered waves shrink to only one point
in d-space, which we mentioned in section 3. In this case,
we can not estimate the boundary with the extraction algo-
rithm of quasi wavefronts. We may deal with this problem
by searching an isolated point with large power. In this case,
we should distinguish the peaks caused by circle-shaped sur-
faces from peaks caused by noises. In anyway, further stud-
ies are required to solve the problem.

6. Performance against Noise

We investigate the performance of the proposed algorithm
in a noisy environment. Figure 16 shows the raw received
signal s′(X, Y) for S/N = 3 dB. Figure 17 shows s(X, Y),
which is the output signal of a matched filter for the raw
signal in Fig. 16. The signal power is not uniquely defined
because the signal is not stationary. Here, we define S as
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Fig. 16 A raw signal s′(X,Y) for S/N = 3 dB.

Fig. 17 A received signal s(X,Y) for S/N = 3 dB.

Fig. 18 Extraction of set P from data s(X,Y) for S/N = 3 dB.

Fig. 19 Extraction of quasi wavefront p ∈ G from data s(X,Y) for S/N =
3 dB.

S =
1

Xmax − Xmin

∫ Xmax

Xmin

max
Y
|s(X, Y)|2 dX. (20)

This definition utilizes the average of a maximum instanta-
neous power for each antenna location as the signal power.

Figure 18 shows the extracted set P from s(X, Y) in
Fig. 17 using the proposed algorithm. Many undesired
points appear in the figure compared to that in Fig. 9. Fig-
ure 19 shows ∪p∈G p, which is the set of all quasi wave-
fronts. Most of undesired points in Fig. 18 disappear be-
cause they do not satisfy the condition |dY/dX| ≤ 1. There-
fore, meaningful quasi wavefronts are extracted by our algo-
rithm. However, some residual undesired quasi wavefronts

Fig. 20 Selection of quasi wavefronts using evaluation values for S/N =
3 dB.

Fig. 21 The estimated target shape for S/N = 3 dB.

remain in the figure. Next, we apply our selection algorithm
using evaluation value in Eq. (17) to p ∈ G in Fig. 19. Fig-
ure 20 shows the selected quasi wavefronts by our selection
algorithm. The extracted quasi wavefronts in the figure are
slightly different from those in Fig. 11. They are distorted
by noise, and a part of the quasi wavefront from the con-
cave surface disappears in the figure. However, all desired
quasi wavefronts are correctly extracted by the proposed al-
gorithm.

Figure 21 shows the estimated target shape by applying
IBST and multiple scattering reduction algorithm to the ex-
tracted quasi wavefronts in Fig. 20. Although the estimated
target shape in Fig. 21 is inferior to Fig. 13, the outline of
the target shape is estimated successfully. Consequently, the
proposed algorithm has a robustness even for a poor S/N
such as 3 dB.

7. Conclusion

We proposed a non-parametric algorithm of estimating tar-
get shapes for UWB pulse radar systems. We clarified the
existence of a reversible transform between a target shape
and a delay time image, which we call BST and IBST. The
proposed algorithm makes use of the transform and achieves
a high resolution imaging.

Firstly, we extracted quasi wavefronts from a received
signal. We proposed quasi wavefront extraction, division,
and selection algorithms using an evaluation value, which
remove undesirable quasi wavefronts caused by noise and
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ringings. Next, we applied IBST to the data to estimate the
target shapes. The target shape estimation using IBST have
a remarkable performance. Moreover, we proposed a false
image reduction algorithm caused by multiple scattering.
We have shown that the algorithm removed the false images
completely. In addition, we proposed an edge locationing
algorithm using IBST, and showed an application example.
We clarified that the estimation accuracy is 0.1 wavelength
in the worst case. We also investigated the performance of
the proposed algorithm in a noisy environment. The pro-
posed algorithm has a good performance for S/N=3 dB. The
achieved accuracy is sufficient for most of applications.
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